
Announcements

▪ Project 0 (optional) was due Friday, January 24, 11:59 PM PT 

▪ HW0 (optional) is due tomorrow! Wednesday, January 29, 11:59 
PM PT 

▪ HW1 is due Wednesday, February 5, 11:59 PM PT 

▪ Project 1 is due Friday, February 7, 11:59 PM PT 

▪ Sections start this week - go to any
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Today

▪ Informed Search 
▪ Heuristics 

▪ Greedy Search 

▪ A* Search 

▪ Graph Search



Recap: Search



Recap: Search

▪ Search problem: 
▪ States (configurations of the world) 
▪ Actions and costs 
▪ Successor function (world dynamics) 
▪ Start state and goal test 

▪ Search tree: 
▪ Nodes: represent plans for reaching states 
▪ Plans have costs (sum of action costs) 

▪ Search algorithm: 
▪ Systematically builds a search tree 
▪ Chooses an ordering of the fringe (unexplored nodes) 
▪ Optimal: finds least-cost plans



Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem



Example: Pancake Problem
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General Tree Search

Action: flip top two 
Cost: 2

Action: flip all four 
Cost: 4

Path to reach goal: 
Flip four, flip three 

Total cost: 7



Informed Search



Search Heuristics

▪ A heuristic is: 
▪ A function that estimates how close a state is to a goal 
▪ Designed for a particular search problem 
▪ Examples: Manhattan distance, Euclidean distance for 

pathing
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Example: Heuristic Function

h(x)



Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place
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Greedy Search



Greedy Search

▪ Expand the node that seems closest… 

▪ What can go wrong?



Greedy Search

▪ Strategy: expand a node that you think is 
closest to a goal state 
▪ Heuristic: estimate of distance to nearest goal for 

each state 

▪ A common case: 
▪ Best-first takes you straight to the (wrong) goal 

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]  
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



A* Search



A* Search

UCS Greedy

A*



Uniform-Cost Search

Example: Teg Grenager
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Greedy Search

Example: Teg Grenager
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Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n) 
▪ Greedy orders by goal proximity, or forward cost  h(n) 

▪ A* Search orders by the sum: f(n) = g(n) + h(n)
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Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n) 
▪ Greedy orders by goal proximity, or forward cost  h(n) 

▪ A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

▪ Should we stop when we enqueue a goal? 

▪ No: only stop when we dequeue a goal
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Is A* Optimal?

▪ What went wrong? 
▪ Actual bad goal cost < estimated good goal cost 
▪ We need estimates to be less than actual costs!
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Admissible Heuristics



Idea: Admissibility

Inadmissible (pessimistic) heuristics break 
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down 
bad plans but never outweigh true costs



Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if: 

 where               is the true cost to a nearest goal 

▪ Examples: 

▪ Coming up with admissible heuristics is most of what’s involved in using 
A* in practice.

4
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Optimality of A* Tree Search



Optimality of A* Tree Search

Assume: 
▪ A is an optimal goal node 
▪ B is a suboptimal goal node 
▪ h is admissible 

Claim: 

▪ A will exit the fringe before B

…



Optimality of A* Tree Search: Blocking

Proof: 
▪ Imagine B is on the fringe 
▪ Some ancestor n of A is on the 

fringe, too (maybe A!) 
▪ Claim: n will be expanded before B 

1. f(n) is less or equal to f(A)

…



Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A) 
▪ Definition of f-cost says: 

f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A) 
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A) 

▪ The admissible heuristic must underestimate the true cost 
h(A) = (est. cost of A to A) = 0 

▪ So now, we have to compare: 
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A) 
f(A) = g(A) = (path cost to A) 

▪ h(n) must be an underestimate of the true cost from n to A  
(path cost to n) + (est. cost of n to A) ≤ (path cost to A) 
g(n) + h(n) ≤ g(A) 
f(n) ≤ f(A)

…



Optimality of A* Tree Search: Blocking

Proof: 
▪ Imagine B is on the fringe 
▪ Some ancestor n of A is on the 

fringe, too (maybe A!) 
▪ Claim: n will be expanded before B 

1. f(n) is less or equal to f(A) 
2. f(A) is less than f(B)

…



Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B) 
▪ We know that: 

f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A) 
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B) 

▪ The heuristic must underestimate the true cost: 
h(A) = h(B) = 0 

▪ So now, we have to compare: 
f(A) = g(A) = (path cost to A) 
f(B) = g(B) = (path cost to B) 

▪ We assumed that B is suboptimal! So 
(path cost to A) < (path cost to B) 
g(A) < g(B) 
f(A) < f(B)

…



Optimality of A* Tree Search: Blocking

Proof: 
▪ Imagine B is on the fringe 
▪ Some ancestor n of A is on the fringe, 

too (maybe A!) 
▪ Claim: n will be expanded before B 

1. f(n) is less or equal to f(A) 
2. f(A) is less than f(B) 
3.  n expands before B 

▪ All ancestors of A expand before B 
▪ A expands before B 
▪ A* search is optimal

…



Properties of A*



Properties of A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

▪ Uniform-cost expands equally in all 
“directions” 

▪ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)] 
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS



Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Video of Demo Contours (Pacman Small Maze) – A*



Comparison

Greedy Uniform Cost A*



A* Applications

▪ Video games 

▪ Pathing / routing problems 

▪ Resource planning problems 

▪ Robot motion planning 

▪ Language analysis 

▪ Machine translation 

▪ Speech recognition 

▪ …
[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] 
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Video of Demo Pacman (Tiny Maze) – UCS / A*



Video of Demo Empty Water Shallow/Deep – Guess Algorithm



Creating Heuristics



Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up with 
admissible heuristics 

▪ Often, admissible heuristics are solutions to relaxed problems, where new actions 
are available 

▪ Inadmissible heuristics are often useful too

15
366



Example: 8 Puzzle

▪ What are the states? 
▪ How many states? 
▪ What are the actions? 
▪ How many successors from the start state? 
▪ What should the costs be?

Start State Goal StateActions



8 Puzzle I

▪ Heuristic: Number of tiles misplaced 

▪ Why is it admissible? 

▪ h(start) = 

▪ This is a relaxed-problem heuristic
8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

▪ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles? 

▪ Total Manhattan distance 

▪ Why is it admissible? 

▪ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

▪ How about using the actual cost as a heuristic? 
▪ Would it be admissible? 
▪ Would we save on nodes expanded? 
▪ What’s wrong with it? 

▪ With A*: a trade-off between quality of estimate and work per node 
▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually 

do more work per node to compute the heuristic itself



Semi-Lattice of Heuristics



Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if 

▪ Heuristics form a semi-lattice: 
▪ Max of admissible heuristics is admissible 

▪ Trivial heuristics 
▪ Bottom of lattice is the zero heuristic (what 

does this give us?) 
▪ Top of lattice is the exact heuristic



Graph Search



▪ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph

Tree Search: Extra Work!



Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

▪ Idea: never expand a state twice 

▪ How to implement:  

▪ Tree search + set of expanded states (“closed set”) 
▪ Expand the search tree node-by-node, but… 
▪ Before expanding a node, check to make sure its state has never been 

expanded before 
▪ If not new, skip it, if new add to closed set 

▪ Important: store the closed set as a set, not a list 

▪ Can graph search wreck completeness?  Why/why not? 

▪ How about optimality?



A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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A* Graph Search Gone Wrong?
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Consistency of Heuristics
▪ Main idea: estimated heuristic costs ≤ actual costs 

▪ Admissibility: heuristic cost ≤ actual cost to goal 
  h(A) ≤ actual cost from A to G 
▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc 
  h(A) – h(C) ≤ cost(A to C) 

▪ Consequences of consistency: 

▪ The f value along a path never decreases 
   h(A) ≤ cost(A to C) + h(C) 

▪ A* graph search is optimal3
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Optimality of A* Graph Search



Optimality

▪ Tree search: 
▪ A* is optimal if heuristic is admissible 
▪ UCS is a special case (h = 0) 

▪ Graph search: 
▪ A* optimal if heuristic is consistent 
▪ UCS optimal (h = 0 is consistent) 

▪ Consistency implies admissibility 

▪ In general, most natural admissible heuristics 
tend to be consistent, especially if from relaxed 
problems



A*: Summary



A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs 

▪ A* is optimal with admissible / consistent heuristics 

▪ Heuristic design is key: often use relaxed problems



Appendix: Search Pseudo-Code



Tree Search Pseudo-Code



Graph Search Pseudo-Code


