Announcements

- Project 0 (optional) was due **Friday, January 24**, 11:59 PM PT
- HW0 (optional) is due tomorrow! **Wednesday, January 29**, 11:59 PM PT
- **EXTERGA)** HW1 is due Wednesday, February 5, 11:59 PM PT
- Project 1 is due **Friday, February 7**, 11:59 PM PT
- **Exections start this week go to any**

CS 188: Artificial Intelligence

Informed Search

Spring 2025

University of California, Berkeley

Today

Exercise Informed Search

- **E** Heuristics
- **E** Greedy Search
- A^* Search

E Graph Search

Recap: Search

Recap: Search

- Search problem:
	- States (configurations of the world)
	- Actions and costs
	- **EXEC** Successor function (world dynamics)
	- **EXEC** Start state and goal test

■ Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)
- **Exerch algorithm:**
	- **Example 2 Systematically builds a search tree**
	- Chooses an ordering of the fringe (unexplored nodes)
	- Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n. We show that $f(n) \le (5n+5)/3$, and that $f(n) \ge 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3n/2 - 1 \le g(n) \le 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

Informed Search

Search Heuristics

■ A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

 $h(x)$

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
	- Heuristic: estimate of distance to nearest goal for each state

 \blacksquare Best-first takes you straight to the (wrong) goal

Norst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)] [Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS Greedy

Uniform-Cost Search

Example: Teg Grenager

Greedy Search

Example: Teg Grenager

Combining UCS and Greedy

- Uniform-cost orders by path cost, or *backward cost* **g(n)**
- Greedy orders by goal proximity, or *forward cost* h(n)

 \blacktriangleright A* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

Combining UCS and Greedy

- Uniform-cost orders by path cost, or *backward cost* **g(n)**
- Greedy orders by goal proximity, or *forward cost* h(n)

 \blacktriangleright A* Search orders by the sum: $f(n) = g(n) + h(n)$

When should A* terminate?

Example 3 Should we stop when we enqueue a goal?

■ No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

■ A heuristic *h* is *admissible* (optimistic) if:

$$
0 \le h(n) \le h^*(n)
$$

where $h^*(n)$ is the true cost to a nearest goal

■ Examples:

■ Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- \blacksquare h is admissible

Claim:

■ A will exit the fringe before B

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
	- 1. f(n) is less or equal to f(A)

1. f(n) is less than or equal to f(A)

■ Definition of f-cost says:

 $f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$ $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

- The admissible heuristic must underestimate the true cost $h(A) = (est. cost of A to A) = 0$
- So now, we have to compare:

 $f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$ $f(A) = g(A) = (path cost to A)$

 \blacksquare h(n) must be an underestimate of the true cost from n to A (path cost to n) + (est. cost of n to A) \le (path cost to A) $g(n) + h(n) \leq g(A)$ $f(n) \leq f(A)$

Proof:

- **Example B is on the fringe**
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
	- 1. $f(n)$ is less or equal to $f(A)$
	- 2. f(A) is less than f(B)

- 2. f(A) is less than f(B)
	- \blacksquare We know that:

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$ $f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)$

- \blacksquare The heuristic must underestimate the true cost: $h(A) = h(B) = 0$
- So now, we have to compare:

 $f(A) = g(A) = (path cost to A)$ $f(B) = g(B) = (path cost to B)$

■ We assumed that B is suboptimal! So (path cost to A) < (path cost to B) $g(A) < g(B)$ $f(A) < f(B)$

Proof:

- \blacksquare Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
	- 1. f(n) is less or equal to f(A)
	- 2. f(A) is less than f(B)
	- 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- \Box A* search is optimal

Properties of A*

Properties of A*

UCS vs A* Contours

■ Uniform-cost expands equally in all "directions"

 \blacksquare A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

A* Applications

- **E** Video games
- Pathing / routing problems
- **Exercise Exercise Planning problems**
- Robot motion planning
- **E** Language analysis
- **E** Machine translation
- **Example 2 Speech recognition**

▪ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

8/30/201.

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- **Often, admissible heuristics are solutions to** *relaxed problems***, where new actions** are available

■ Inadmissible heuristics are often useful too

Example: 8 Puzzle

- What are the states?
- **■** How many states?
- What are the actions?
- **EXECUTE: How many successors from the start state?**
- \blacksquare What should the costs be?

8 Puzzle I

- **EXTER:** Number of tiles misplaced
- Why is it admissible?
- $h(start) = 8$
- **This is a relaxed-problem heuristic**

Start State **Goal State**

8 Puzzle II

- **■** What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total *Manhattan* distance
- Why is it admissible?
- **n** h(start) = $3 + 1 + 2 + ... = 18$

Start State

8 Puzzle III

■ How about using the *actual cost* as a heuristic?

- Would it be admissible?
- Would we save on nodes expanded?
- \blacksquare What's wrong with it?

■ With A^{*}: a trade-off between quality of estimate and work per node

■ As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

■ Dominance: $h_a \geq h_c$ if

 $\forall n : h_a(n) > h_c(n)$

- **Heuristics form a semi-lattice:**
	- Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- **Trivial heuristics**
	- \blacksquare Bottom of lattice is the zero heuristic (what does this give us?)
	- Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

■ Failure to detect repeated states can cause exponentially more work.

Graph Search

■ In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- **I** Idea: never expand a state twice
- How to implement:
	- **Tree search + set of expanded states ("closed set")**
	- Expand the search tree node-by-node, but...
	- Before expanding a node, check to make sure its state has never been expanded before
	- **If not new, skip it, if new add to closed set**
- **EXTED FIGHT IMPORTANT: STORE the closed set as a set, not a list**
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
	- Admissibility: heuristic cost ≤ actual cost to goal
		- h(A) ≤ actual cost from A to G
	- Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \leq \text{cost}(A \text{ to } C)$

- Consequences of consistency:
	- The f value along a path never decreases
		- $h(A) \leq \text{cost}(A \text{ to } C) + h(C)$
	-

Optimality of A* Graph Search

Optimality

Figure 1 Tree search:

- \blacksquare A* is optimal if heuristic is admissible
- **UCS** is a special case $(h = 0)$
- **Example Search:**
	- \blacksquare A* optimal if heuristic is consistent
	- **■** UCS optimal ($h = 0$ is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- \blacksquare A* uses both backward costs and (estimates of) forward costs
- \Box A^{*} is optimal with admissible / consistent heuristics
- **EXTED Heuristic design is key: often use relaxed problems**

Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

```
function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)loop do
    if fringe is empty then return failure
    node \leftarrow \text{REMOVE-FRONT}(fringe)if GOAL-TEST(problem, STATE[node]) then return node
    for child-node in EXPAND(STATE[node], problem) do
        fringe \leftarrow \text{INSERT}(child-node, fringe)end
end
```
Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
 closed \leftarrow an empty set
 fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[\text{problem}]), \text{ fringe})loop do
    if fringe is empty then return failure
    node \leftarrow \text{REMOVE-FRONT}(fringe)if GOAL-TEST(problem, STATE[node]) then return node
    if \text{STATE}[node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE [node], problem) do
            fringe \leftarrow \text{INSERT}(child-node, fringe)end
 end
```