
Announcements

▪ Project 0 (optional) was due Friday, January 24, 11:59 PM PT

▪ HW0 (optional) is due tomorrow! Wednesday, January 29, 11:59
PM PT

▪ HW1 is due Wednesday, February 5, 11:59 PM PT

▪ Project 1 is due Friday, February 7, 11:59 PM PT

▪ Sections start this week - go to any

CS 188: Artificial Intelligence

Informed Search

Spring 2025

University of California, Berkeley

Today

▪ Informed Search
▪ Heuristics

▪ Greedy Search

▪ A* Search

▪ Graph Search

Recap: Search

Recap: Search

▪ Search problem:
▪ States (configurations of the world)
▪ Actions and costs
▪ Successor function (world dynamics)
▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states
▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree
▪ Chooses an ordering of the fringe (unexplored nodes)
▪ Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

Informed Search

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Examples: Manhattan distance, Euclidean distance for

pathing

10

5

11.2

Example: Heuristic Function

h(x)

Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Greedy Search

Greedy Search

▪ Expand the node that seems closest…

▪ What can go wrong?

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS Greedy

A*

Uniform-Cost Search

Example: Teg Grenager

S

a

b

c

ed

g = 0

g = 1

g = 2

g = 3

g = 4 g = 9S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

G
g = 6

Greedy Search

Example: Teg Grenager

S

a

b ed

d

G

h=6

h=5

h=6 h=2 h=1

h=2

h=0

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)
▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c
h=7

3

e h=1
1

Example: Teg Grenager

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)
▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c
h=7

3

e h=1
1

Example: Teg Grenager

S

a

b ed

G

f=0+6

f = 1+5

f = 2+6 f = 4+2

f = 6+0

f = 9+1

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S

A

G

B

G

f=0+3

f = 2+2 f = 2+1

f = 4+0 f = 5+0

Is A* Optimal?

▪ What went wrong?
▪ Actual bad goal cost < estimated good goal cost
▪ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

S

A G

f=0+7

f = 1+6 f = 5+0

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

4
15

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
▪ A is an optimal goal node
▪ B is a suboptimal goal node
▪ h is admissible

Claim:

▪ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:
▪ Imagine B is on the fringe
▪ Some ancestor n of A is on the

fringe, too (maybe A!)
▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

…

Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)
▪ Definition of f-cost says:

f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

▪ The admissible heuristic must underestimate the true cost
h(A) = (est. cost of A to A) = 0

▪ So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

▪ h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) ≤ (path cost to A)
g(n) + h(n) ≤ g(A)
f(n) ≤ f(A)

…

Optimality of A* Tree Search: Blocking

Proof:
▪ Imagine B is on the fringe
▪ Some ancestor n of A is on the

fringe, too (maybe A!)
▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

…

Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B)
▪ We know that:

f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

▪ The heuristic must underestimate the true cost:
h(A) = h(B) = 0

▪ So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)

▪ We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)
g(A) < g(B)
f(A) < f(B)

…

Optimality of A* Tree Search: Blocking

Proof:
▪ Imagine B is on the fringe
▪ Some ancestor n of A is on the fringe,

too (maybe A!)
▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

▪ All ancestors of A expand before B
▪ A expands before B
▪ A* search is optimal

…

Properties of A*

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …
[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new actions
are available

▪ Inadmissible heuristics are often useful too

15
366

Example: 8 Puzzle

▪ What are the states?
▪ How many states?
▪ What are the actions?
▪ How many successors from the start state?
▪ What should the costs be?

Start State Goal StateActions

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) =

▪ This is a relaxed-problem heuristic
8

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

▪ How about using the actual cost as a heuristic?
▪ Would it be admissible?
▪ Would we save on nodes expanded?
▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node
▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what

does this give us?)
▪ Top of lattice is the exact heuristic

Graph Search

▪ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:

▪ Tree search + set of expanded states (“closed set”)
▪ Expand the search tree node-by-node, but…
▪ Before expanding a node, check to make sure its state has never been

expanded before
▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B C

SBCG (6+0) SBCB (5+1)

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B C

SBCG (6+0) SBCB (5+1)

SAC (2+1)

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B C G

SBCG (6+0) SBCB (5+1)

SAC (2+1)

Consistency of Heuristics
▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc
 h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases
 h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal3

A

C

G

h=4 h=1
1

h=2

Optimality of A* Graph Search

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems

A*: Summary

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

Graph Search Pseudo-Code

