Announcements

= HW1 is due Wednesday, February 5, 11:59 PM PT
» Project 1 is due Friday, February 7, 11:59 PM PT
= Sections start this week - go to any

CS 188: Artificial Intelligence

Constraint Satisfaction Problems

John Canny, Oliver Grillmeyer

University of California, Berkeley

Graph Search and Consistency

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{sBCG }
S (0+2)
A/\A
SA (1+4) SB (1+1)

SBCG (6+0) -SBCB(5+1)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The fvalue along a path never decreases
h(A) < cost(A to C) + h(C)

= A* graph search is optimal

A* Graph Search with Consistent Heuristic

State space graph Search tree Closed set
{SsBAC }
S (0+2)
A/\
SA (1+2) SB (1+1)

»/ /\

SAC (2+1) -SBC{3+1) .SBS[242)

h=1 K

h=0 SACB(4+1)

Consistency => non-decreasing f-score

Inconsistent Consistent
S (0+2) ; S (0+2)
/\A A/\
SA (1+4) SB (1+1) h=1 @ SA (1+2) SB (1+1)
h=0
SBC (3+1) &BS.(.Z.-Q.)_ SAC (2+1)

y
SBCA (4+4) ¢SBCG (6+0 Aaca.cs;u.;. SACA—QH-) ACG (5+0

Optimality of A* Graph Search

s Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

= Result: A* graph search is optimal

Optimality of A* Graph Search

Optimality

Tree search:

= A¥*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:

= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems

A*: Summary

A*: Summary

s A* uses both backward costs and (estimates of) forward costs
» A* is optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

,

e

Appendix: Search Pseudo-Code

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do

if fringe is empty then return failure

node <~ REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

CS 188: Artificial Intelligence

Constraint Satisfaction Problems

John Canny, Oliver Grillmeyer

University of California, Berkeley

What is Search For?

= Assumptions about the world: a single agent, deterministic actions, fully observed state,

discrete state space
]
- oOL %
. 4
5 .ﬁmd

= Planning: sequences of actions

= The path to the goal is the important thing
= Paths have various costs, depths

= Heuristics give problem-specific guidance

= ldentification: assignments to variables
= The goalitself is important, not the path

= All paths at the same depth (for some formulations)
= CSPs are a specialized class of identification problems

Constraint Satisfaction Problems

=

Constraint Satisfaction Problems

Standard search problems:
= Stateis a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a

domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

M

-

Tasm'ia

-

|

Example: Map Coloring

« Variables: WA, NT, Q, NSW, V, SA, T

= Domains: D = {red, green, blue}

s Constraints: adjacent regions must have different colors

Implicit: \WA = NT

Explicit: (\wWA,NT) € {(red, green), (red, blue), ...}
= Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Example: N-Queens

= Formulation 1:

= Variables: X
= Domains: {0, 1}

s Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi.j.k (Xij Xg;) € {(0,0),(0,1), (1,0} X, =
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} 0,
Vi, j, k (X, Xiqr i—k) € 1(0,0),(0,1),(1,0)}

Example: N-Queens

= Formulation 2:

Q1
Q2
@3
Qa

= Variables: @,

= Domains: (1.2 3,... N}

s Constraints:

Implicit: V4, j non-threatening(Q;, Q,)

Explicit: (Q1,Q») € {(1,3),(1,4),...}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables @
@] -

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

= Variables:

FTUWRO X1 Xo X3
s Domains:

{0,1,2,3,4,5,6,7,8,9}
s Constraints:

alldiff(F, T, U, W, R, O)

O+0=R+10-X;

Example: Sudoku

= Variables:

= Each (open) square
J Fa 8 N\ = Domains:
« {1,2,...,9}
= Constraints:

9-way alldiff for each column

9-way alldiff for each row

|l |O]-
w

9-way alldiff for each region

(@)
NN |0 W

7 (or can have a bunch of
pairwise inequality
2 3 / constraints)

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

= Approach:
s Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

s Discrete Variables
s Finite domains

= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

s Continuous variables

» E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to reducing
domains), e.g.:

SA # green

» Binary constraints involve pairs of variables, e.g.:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

s Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (WEe'll ignore these until we get to Bayes’ nets)

Real-World CSPs

Scheduling problems: e.g., when can we all meet?
Timetabling problems: e.g., which class is offered when and where?
Assignment problems: e.g., who teaches what class
Hardware configuration

Transportation scheduling

Factory scheduling

Circuit layout
Fault diagnosis

... lots more!

210G O —

Many real-world problems involve real-valued variables...

Solving CSPs

AU

Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned so
far (partial assignments)
= Initial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Search Methods

= What would BFS do?

= What would DFS do?

= What problems does naive search have? @

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Search Methods

* What would BFS do?

* What would DFS do? W

[demo: dfs]

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assighments are commutative, so fix ordering
= l.e., [WA=red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= l.e. consider only values which do not conflict with previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Video of Demo Coloring — Backtracking

| beta.cs188.org/exercises

“~ C beta.cs188.0rg X

y . . . P ’ \l‘ / : .\‘ —

. |]‘] Simple [=]
\ / \ / \ /
a iy e Algorithm
Y 2 ; Backtracking i
/ \ Ordering
| J \

\ / \ @ None
\ ! / \) / \ . / MRV

b S - Y MRV with LCV
I :|; / N Filtering

. / / \ o None
/ \ / \ / \ Forward Checking
— — ‘ Arc Consistency
\ / "\ / \ /‘(

e e SIAN SN Speed
Speedup Frame Delay
Reset Pause Next Play Faster 1 X !

11:46 AM
9/4/2012

- ol ¥ G %

Backtracking Example

~o

—]

¢ & ¢

i
oy,

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation
= What are the choice points?

[Demo: coloring -- backtracking]

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?

= In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing
assignment

WA NT["Q

NS

WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking

T
Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options

= Forward checking: Cross off values that violate a constraint when added to the existing

assignment

%_"H:_"‘_Lb_"pt

A [Nsw

WA NT NSW Vv
ECEETEIN I AETEET N |
P BT EETEETE -
PR =l HE E|ENNE 4
[a [—=

[demo: forward checking]

Filtering: Constraint Propagation

s Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

WA NT Q NSW Vv SA

_N;FLQ I I I I I I
‘ e S| CEECEECE[EEE] OE
be = I L L I

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
s Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

WA NT Q NSW \' SA

—

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT [¢q WA NT Q NSW Vv SA
\‘“LLMNSW 11 [E[mrE] =

3 v

= Important: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

= Can be run as a preprocessor or after each assignment Remember:
= What’s the downside of enforcing arc consistency? Delete from

the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[X;] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X;]; removed — true
return removed

= Runtime: O(n2d3), can be reduced to O(n2d2)
= ... but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Video of Demo Arc Consistency — CSP Applet — n Queens

L 5 Appie Verson 451 — rveQueenes o) WIS Nt - Winiows

File Edit View CSP Options Help

,d_m Hﬂ :,}% D‘" @ J __\ Alﬁ ¥ /'(_'l I:] ‘_L '7’

Create Solve ‘

Click on a variable to split its domair r

Click on a consfraint to reorder its variables
Click on an arc to make it arc-consistent ug’é//\/j

‘ A
/ N\
P 4 Queens 3 YN
e e R 8 \ |
(e) - \(123 I '
\1 2 2 Queens 3 Queans 2 \>{\ s)/ C \]
\T/ N \\ ',' \ / 2 \‘—’/ | | o l
| k \\ [\/ 2 Il D ‘7 ‘
Y A ‘ | |
Quaens 1 Queens 2 Queens 2 Queens 1 6
\ ‘ e ‘I". / 1 |
.\‘/\ r /, ot . e A /
o I W) |,|
\{(12345) ity \(12345)
NG
S e -
: i Rl

12:09 PM
9/4/2012

G o« WG

Limitations of Arc Consistency

» After enforcing arc consistency: O

= Can have one solution left ‘

= Can have multiple solutions left

= Can have no solutions left (and

not know it) @
= Arc consistency still runs inside @ @

a backtracking search! What went

wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

o o ——

@ .) ‘®
o ol \eo/

o, (o o‘,_go.o}_:o o (o o

N
(@ .] L J .|

Graph

Complex B4

Algorithm

Backtracking (=

Ordering

o None

MRV
MRV with LCV

Filtering
None
o Forward Checking
Arc Consistency

Speed

Speedup Frame Delay

<

A a % G %

1214 PM
9/4/2012

Video of Demo Coloring — Backtracking with Forward Checking —
Complex Graph

Video of Demo Coloring — Backtracking with Arc Consistency —
Complex Graph

“—

&

beta.cs188.org

. .}_. .],__0 .,,_. .’___. .*—{. .'

—

0 (

. .}__. .. {. .H

U ..., Qo) (*.’.n
3 6
}—. o] . N (o ©

Graph

Complex v

Algorithm

Backtracking (i

Ordering

o None

MRV
MRV with LCV

Filtering
None
Forward Checking
o Arc Consistency

X Speed

Speedup Frame Delay

(ﬁk:

< al W G W

1215 PM
9/4/2012

Ordering

Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):

= Choose the variable with the fewest legal left values in its domain

=S

= Why min rather than max?

s Also called “most constrained variable”

= “Fail-fast” ordering

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value

= Given a choice of variable, choose the least ‘
constraining value

= |.e., the one that rules out the fewest values in the ‘
remaining variables

= Note that it may take some computation to determine ‘_L';‘

this! (E.g., rerunning filtering)

= Why least rather than most?

» Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring — backtracking + AC + ordering]

