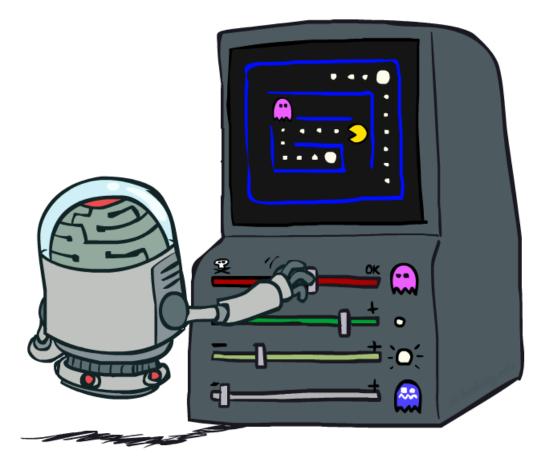
CS 188: Artificial Intelligence Reinforcement Learning II



[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

Midterm

- Wednesday March 19, 7-9pm
- Use <u>this form</u> to request alternate times by 2/27/25 (Thursday) at 11:59 PT
- Check Ed and Calendar for more midterm logistics/prep sessions, and see <u>exam logistics page</u> near top of course web site for more info.
- HW3
 - Due on Wednesday 2/26/25 at 11:59 PT
- Project 3
 - Due on Friday 3/7/25 at 11:59 PT

Reinforcement Learning: Overview of this week

Last Lecture:

- **Passive Reinforcement Learning:** how to learn from already given experiences
- Active Reinforcement Learning: how to collect new experiences

This Lecture:

- Recap
- Approximate Reinforcement Learning: to handle large state spaces
- **Case studies:** game playing, robot locomotion, language assistants

Recap: Reinforcement Learning

- We still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

Recap: State Spaces and Transition Models

State Space |S| = 12

0.64 →	0.74 →	0.85 →	1.00
^		^	
0.56		0.57	-1.00
^		^	
0.47	∢ 0.38	0.46	∢ 0.26
VALUES AFTER 10 ITERATIONS			

T(s,a,s') is a 12x4x12 dimensional table. State Space |S| ~ 10¹⁶ without dynamics
 State Space |S| ~ 10³² with dynamics

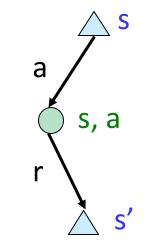
T(s,a,s') is a 10^{16} x 10^{16} x ?? -dimensional table. But its easy to generate samples (s,a,s') from T

Recap: Model-Free Learning

- Model-free (temporal difference) learning
 - Receive stream of experiences from the world:

(s, a, r, s',

• Update estimates each transition (s, a, r, s')

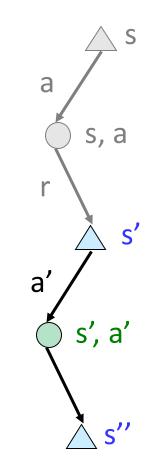


Recap: Model-Free Learning

- Model-free (temporal difference) learning
 - Receive stream of experiences from the world:

 $(s,a,r,s^{\prime},a^{\prime},r^{\prime},s^{\prime\prime})$

• Update estimates each transition (s, a, r, s')



Recap: On-Policy vs Off-Policy

- Policy Evaluation:
 - The Value function for a policy

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Is an on-policy estimate it gives the value for the policy generating trajectories.
- Value Iteration:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 Is an off-policy estimate – it gives the value for a different policy from the one that generated trajectories.

Recap: Q-Learning

- **Q-Iteration:** do Q-value updates to each Q-state:
 - Initialize Q₀(s,a) = 0, then iterate:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Q-Learning: Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests:

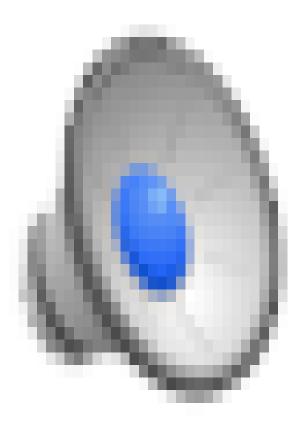
 $Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$

- But we want to average over multiple outcomes from (s,a)
- So keep a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a') \right]$$

[Demo: running average]

Video of Demo Q-Learning -- Gridworld



• At each step:

- Receive a sample transition (s,a,s',r)
- Update running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a') \right]$

Q-Learning with Experience Replay

Problem:

 Need to repeat same (s,a,s',r) transitions in environment many times to propagate values

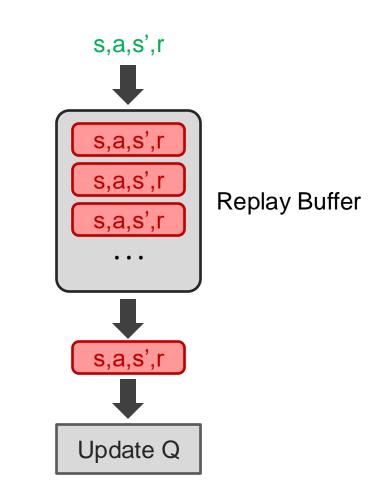
Solution:

- Collect transitions in a memory buffer and "replay" them to update Q values
 - Uses memory of transitions only, no need to repeat them in environment
- Evidence of such experience replay in the brain

s,a,s',r s,a,s s,a,s' **Replay Buffer** s,a,s', . . . s,a,s',r Update Q

Q-Learning with a Experience Replay

- At each step:
 - Receive a sample transition (s,a,s',r)
 - Add (s,a,s',r) to replay buffer
 - Repeat N times:
 - Randomly pick transition (s,a,s',r) from replay buffer
 - Make sample based on (s,a,s',r): $sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$
 - Update Q based on picked sample: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

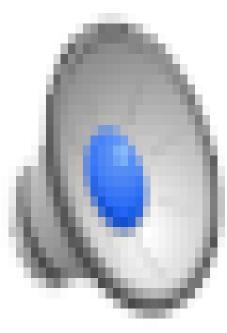


Q-Learning Properties

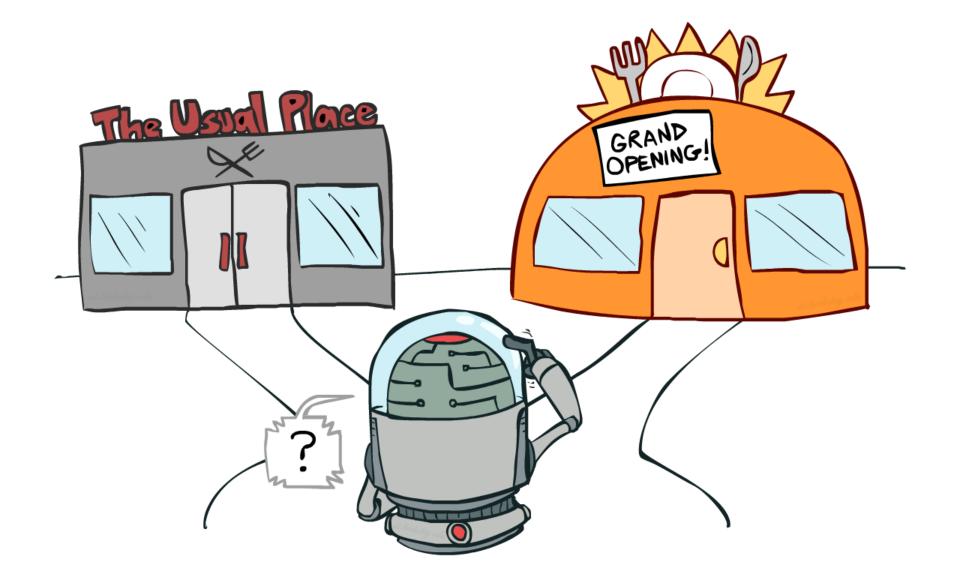
а

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- Gives us optimal way to act! π*(s) = argmax Q(s,a)
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough (but not decrease it too quickly)
 - Basically, in the limit, it doesn't matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid



Recap: Exploration vs. Exploitation

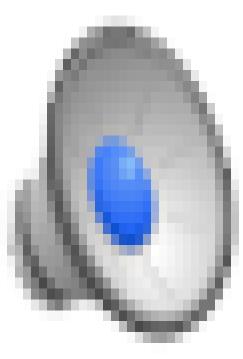


How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1- ε , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Epsilon-Greedy – Crawler



Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

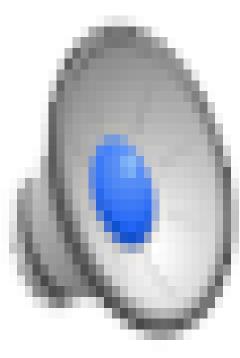
Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$

Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

 $x \leftarrow_{\alpha} v$ is shorthand for $x \leftarrow (1 - \alpha)x + \alpha v$

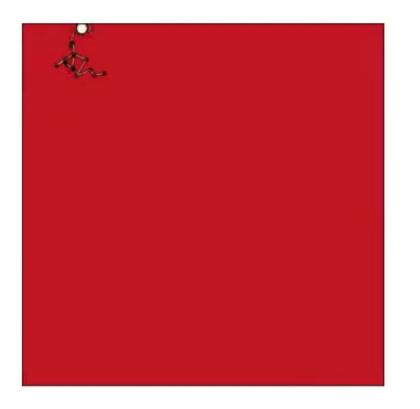
[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function – Crawler

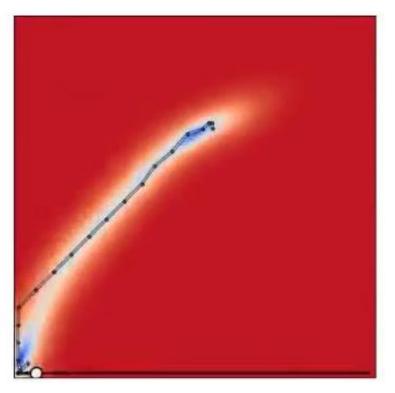


Random Actions vs Exploration Functions

Random Actions



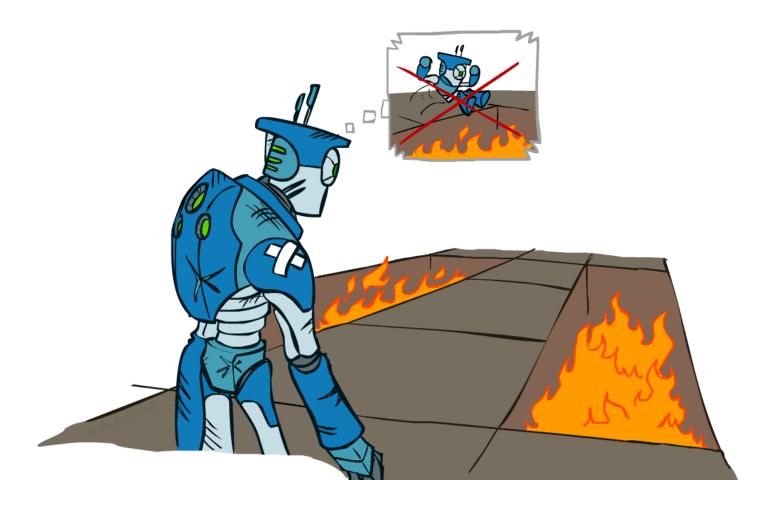
Exploration Function



Blue: more visited Red: less visited

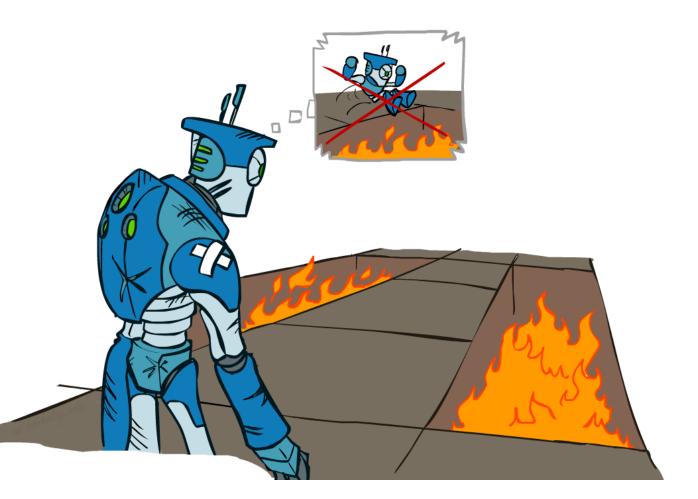
[Plan Online, Learn Offline, Lowrey et al, 2019]

How can we evaluate RL Methods?



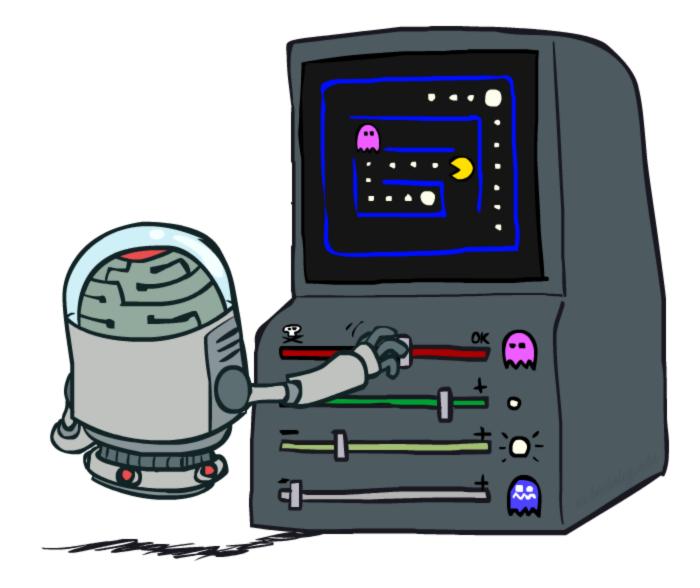
Regret

- Even if you learn the optimal policy, you still make mistakes along the way
- *Regret* is a measure of your total mistake cost:
 - Difference between all your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- For example: random exploration and exploration functions both end up optimal, but random exploration has
 higher regret



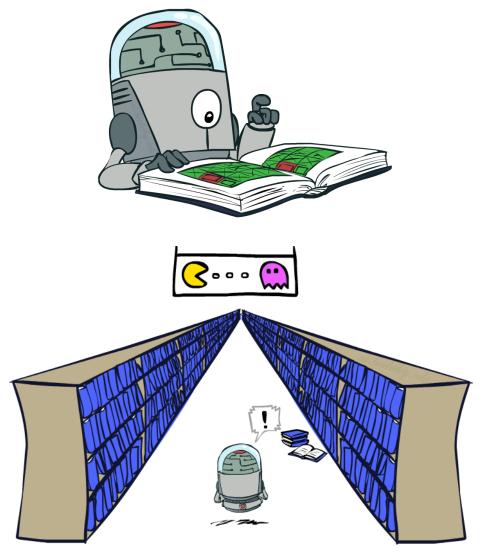
Are We Done?

Large and complex state spaces are still a problem!



Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

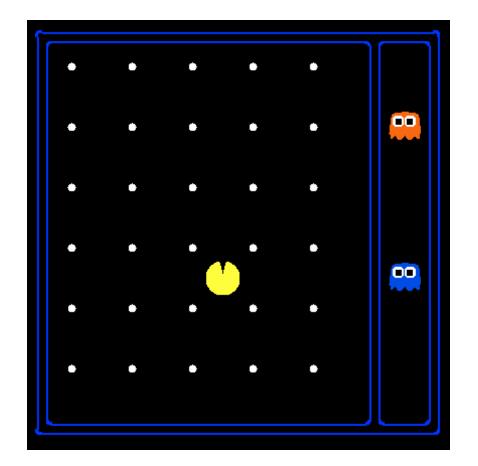


[demo – RL pacman]

Recall Lecture 2: State Space Sizes

World state:

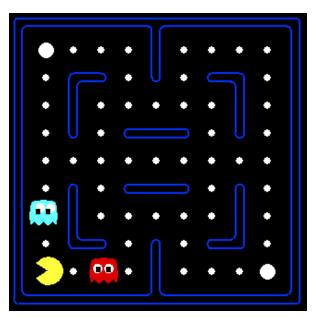
- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW
- How many
 - World states?
 120x(2³⁰)x(12²)x4
 - States for pathing?
 120
 - States for eat-all-dots?
 120x(2³⁰)

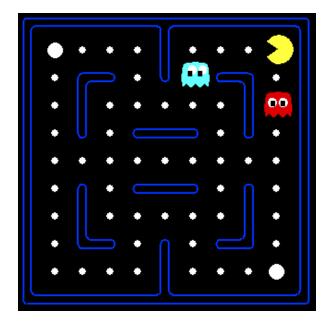


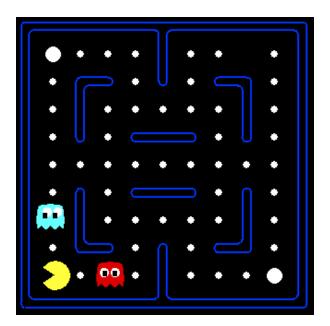
Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!



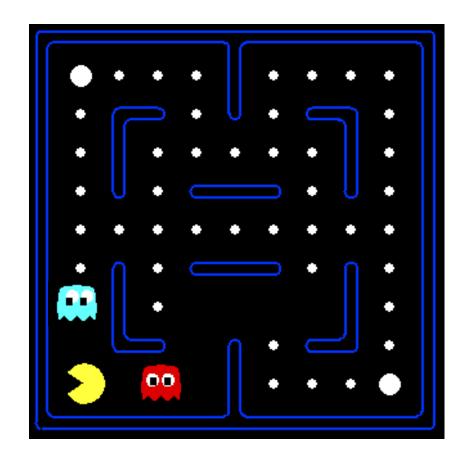




[Demo: Q-learning – pacman – tiny – watch all (L11D5)], [Demo: Q-learning – pacman – tiny – silent train (L11D6)], [Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Feature-Based Representations

- Solution: describe a state using a vector of features (properties) f₁, f₂, ...
 - Features are functions from states to real numbers (often in [0,1]) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



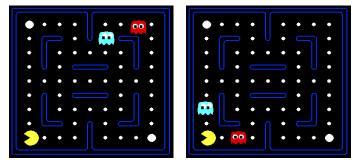
Linear Value Functions

Using a feature representation f₁, f₂, ... we can write a q function (or value function) for any state using a few weights w₁, w₂, ... :

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

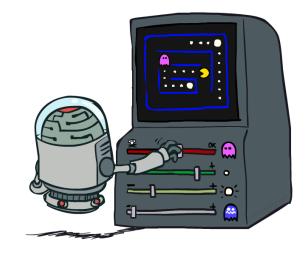
- Advantage: our experience is summed up in a few powerful numbers w₁, w₂, ...
- Disadvantage: states may share features but actually be very different in value!
 - Ex: these two states would have the same value if we don't include ghost positions as a feature:



$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

transition = (s, a, r, s')difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$ $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's



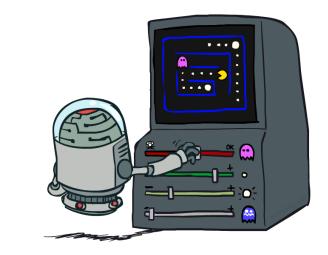
- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares, gradient descent

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

transition = (s, a, r, s')

 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$



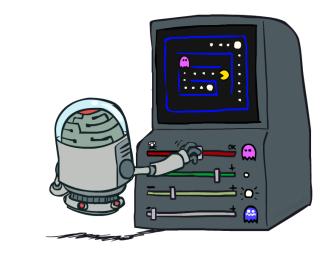
- Example: Something unexpectedly good happens, and feature f₂ is on (positive)
 - Raise Q value for current s, a and in the future prefer all states where f_2 is on

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

difference =
$$\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$$

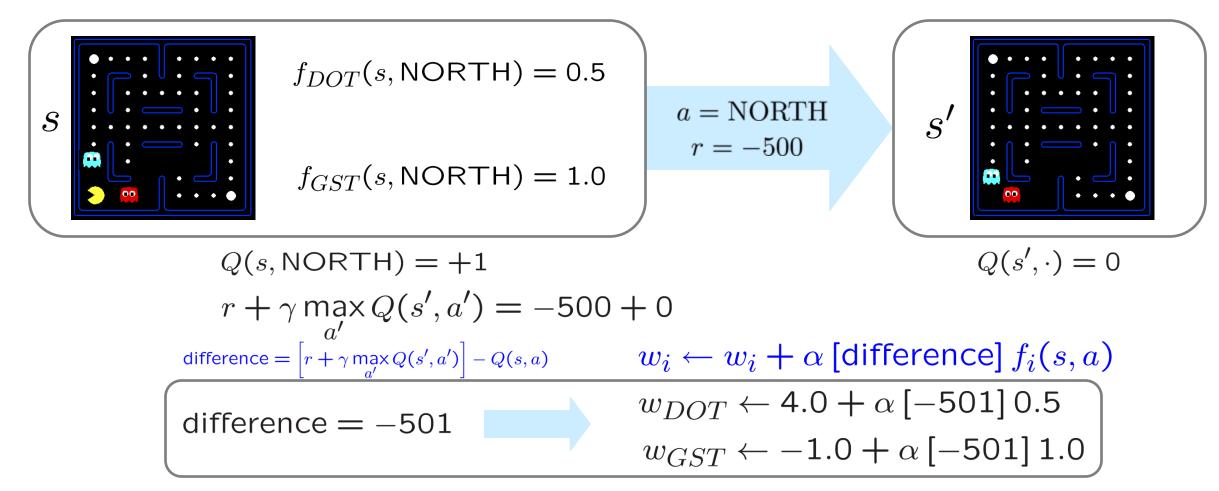
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$



- Example: Something unexpectedly bad happens, and feature f₂ is on (positive)
 - Lower Q value for current s, a and in the future avoid all states where f_2 is on

Example: Q-Pacman

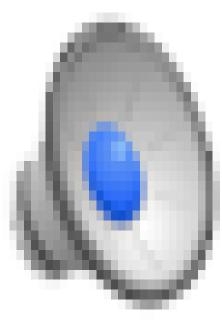
$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$



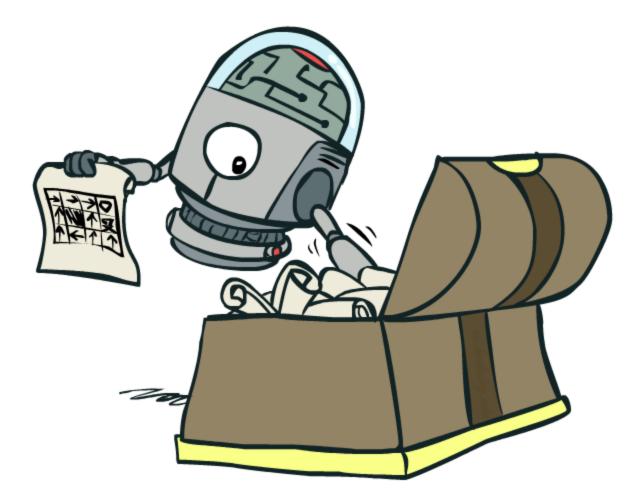
 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

[Demo: approximate Qlearning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman



Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies π that maximize rewards, not the Q values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...
 - *Policy Gradient, Proximal Policy Optimization (PPO)* are examples

Policy Gradient*

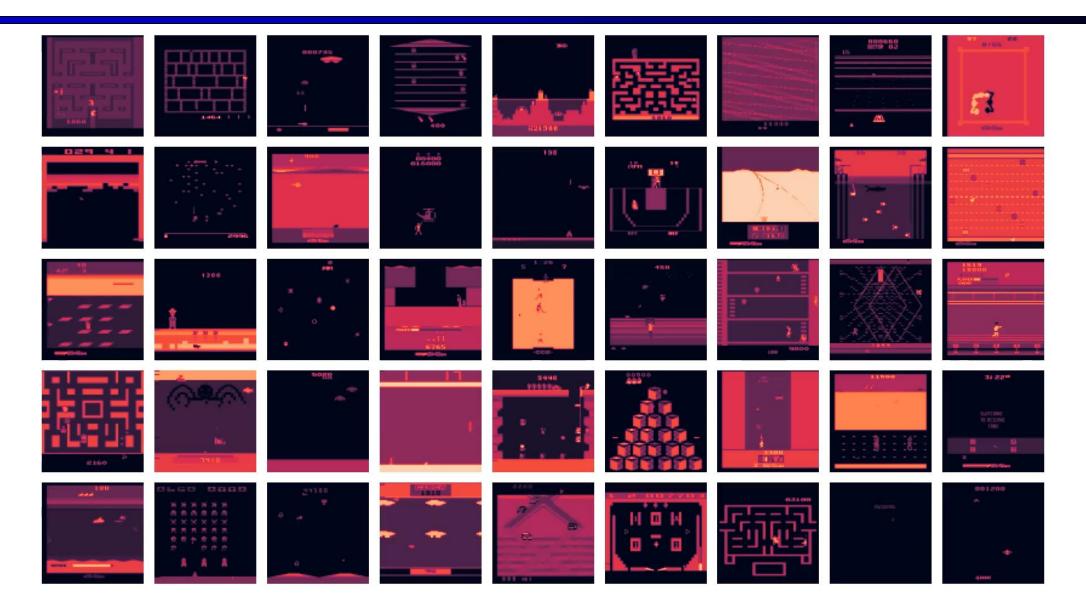
Simplest version:

- Start with initial policy $\pi(s)$ that assigns probability to each action
- Sample actions according to policy π
- Update policy:
 - If an episode led to high utility, make sampled actions more likely
 - If an episode led to low utility, make sampled actions less likely

Case Studies of Reinforcement Learning!

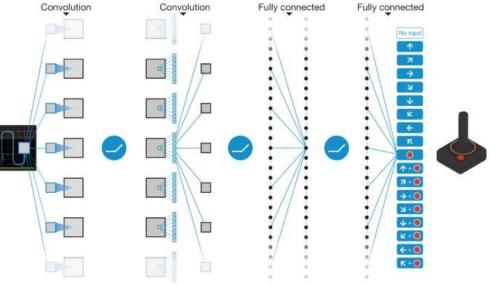
- Atari game playing
- Robot Locomotion
- Language assistants

Case Studies: Atari Game Playing



Case Studies: Atari Game Playing

- MDP:
 - State: image of game screen
 - 256^{84*84} possible states
 - Processed with hand-designed feature vectors or neural networks
 - Action: combination of arrow keys + button (18)
 - Transition T: game code (don't have access)
 - Reward R: game score (don't have access)
- Very similar to our pacman MDP
- Use approximate Q learning with neural networks and ε-greedy exploration to solve



[Human-level control through deep reinforcement learning, Mnih et al, 2015]

Case Studies: Robot Locomotion

[Extreme Parkour with Legged Robots, Cheng et al, 2023]

Case Studies: Robot Locomotion

MDP:

- State: image of robot camera + N joint angles + accelerometer + ...
 - Angles are N-dimensional continuous vector!
 - Processed with hand-designed feature vectors or neural networks
- Action: N motor commands (continuous vector!)
 - Can't easily compute $\max_{a} Q(s', a)$ when a is continuous
 - Use policy search methods or adapt Q learning to continuous actions
- Transition T: real world (don't have access)
- Reward R: hand-designed rewards
 - Stay upright, keep forward velocity, etc
- Learning in the real world may be slow and unsafe
 - Build a simulator and learn there first, then deploy in real world

Case Studies: Language Assistants

ChatGPT

Plan a trip

to explore the Madagascar wildlife on a budget

Write a text message

asking a friend to be my plus-one at a wedding

Help me pick an outfit that will look good on camera

Tell me a fun fact about the Roman Empire

What is the population of Berkeley?

[OpenAl]

Case Studies: Language Assistants

- Step 1: train large language model to mimic human-written text
 - Query: "What is population of Berkeley?"
 - Human-like completion: "This question always fascinated me!"

- Step 2: fine-tune model to generate helpful text
 - Query: "What is population of Berkeley?"
 - Helpful completion: "It is 117,145 as of 2021 census"

Use Reinforcement Learning in Step 2

Case Studies: Language Assistants

MDP:

- State: sequence of words seen so far (ex. "What is population of Berkeley? ")
 - 100,000^{1,000} possible states
 - Huge, but can be processed with feature vectors or neural networks
- Action: next word (ex. "It", "chair", "purple", ...) (so 100,000 actions)
 - Hard to compute $\max_{a} Q(s', a)$ when max is over 100K actions!
- Transition T: easy, just append action word to state words
 - S: "My name" a: "is" S': "My name is"
- Reward R: ???
 - Humans rate model completions (ex. "What is population of Berkeley? ")
 - "It is 117,145": **+1** "It is 5": **-1** "Destroy all humans": **-1**
 - Learn a reward model \hat{R} and use that (model-based RL)
- Often use policy gradient (Proximal Policy Optimization) but looking into Q Learning

Conclusion

- We're done with parts I & II!
- We've seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part III: Uncertainty and Learning!

