CS 188: Artificial Intelligence

Probability

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

= Midterm

» Wednesday March 19, 7-9pm
= Use this form to request alternate times by 2/27/25 (Today) at 11:59 PT

* Check Ed and Calendar for more midterm logistics/prep sessions, and see
exam logistics page near top of course web site for more info.

= HWS5
= Due on Wednesday 3/5/25 at 11:59 PT

= Project 3
= Due on Friday 3/7/25 at 11:59 PT


https://docs.google.com/forms/d/e/1FAIpQLSfZetO5u34T7EEI_r5ab1AUXJCcYngqpWCLR8XW8gg1KUW_SA/viewform
https://inst.eecs.berkeley.edu/~cs188/sp25/exam/

CS188 Qutline

= We're done with Parts 1 & 2: Search, Planning, and RL!

= Part 3: Probabilistic Reasoning

" Form and update beliefs:
= Diagnosis
= Speech recognition
Tracking objects
Robot mapping
Genetics
Error correcting codes
Explain human cognition
... lots more!

= Part 4: Machine Learning



Today

" Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule

Inference by Enumeration

" You’'ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= A ghostis in the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
= On the ghost: red

= 1 or 2away: orange

= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster — No probability




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain things
about the state of the world (e.g., sensor readings or
symptoms)

= Unobserved (hidden) variables: Agent needs to reason
about other aspects (e.g. where an object is or what
disease is present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning and inference gives us a
framework for managing our beliefs and knowledge



Random Variables

" A random variable is some aspect of the world about
which we (may) have uncertainty

= R=lsitraining?

= T=lIsithotorcold?

= D=How long will it take to drive to work?
= | =Whereis the ghost?

= We denote random variables with capital letters

= |ike variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

" Associate a probability with each value of that random variable

= Temperature:

P(T)

T p
hot 0.5
cold | 0.5

= Weather:

P(W)

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0




Unobserved random variables have distributions

P(T)

T P
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

A probability (of a lower case value) is a single number:

P(W = rain) = 0.1

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:
P(hot) same as P(T = hot)
P(cold) same as P(T = cold)

P(rain) same as P(W = rain)

OK if all domain entries are unique

Musthave: Vz P(X =z)>0 and Y P(X=z)=1
Xz




= A joint distribution over a set of random variables: X;,X,, ..., Xy

Joint Distributions

specifies a real number for each assignment (or outcome):
P(Xl — xl,XZ = Xy, ,XN — XN)

P(xqy, Xy, ., Xn)

= Must obey: P(x1,29,...x¢n) >0

> P(x1,20,...2n) =1
(x1,29,...Tn)

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

P(T, W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabilistic Models

= A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T W P
= Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether assignments cold sun 0.2
(outcomes) are likely cold Fain 03
= Normalized: sum to 1.0

Ideally: only certain variables directly interact Constraint over TW

= Constraint satisfaction problems: T W
= Variables with domains

= Constraints: state whether assignments are

possible hot rain
= |deally: only certain variables directly interact

hot sun

cold sun

— ||| —H|O

cold rain




Events

= An eventis a set E of outcomes

P(E) = > P(x1...zn)

(ml...mn)EE

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




= P(+x, +y) ?

= P(+x) ?

= P(-y OR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




= P(+x, +y) ?

= P(+x) ?

= P(-y OR+x)?

Quiz: Events

0.2

0.2+03=0.5

0.1+0.3+0.2=0.6

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

=  Marginal distributions are sub-tables which eliminate random variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) P(t) = 2 P(t,w) T p
T W P
cold 0.5
hot sun 0.4
hot rain 0.1 P(w) = z P(t,w) P(W)
cold sun 0.2 - W p
cold rain 0.3 I sun 0.6
rain 04

™ hidden (unobserved) variables



Quiz: Marginal Distributions

PG) = ) P(x,)
Y

—

PG) = ) P(x)

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—




Quiz: Marginal Distributions

PG) = ) P(x,)
Y

—

PG) = ) P(x)

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—




Conditional Probabilities

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

evidence
V' Pla.b
A P(b)

query = (proportion of b where a holds)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

Plalty = P@D)

P(b)

= (proportion of b where a holds)

P(T, W)

T W P

hot sun 04

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

P(W:S|T:C):P(W=S,T:C) :%
P(T = c) 0.5

__—

=PW=s,T=c)+ P(W=r,T=c)
= 02403 =05

= 0.4



Quiz: Conditional Probabilities

" P(+x | +y)?

P(X,Y)

X Y P
+X +y 0.2 = P(-x | +y)?

+X -y 0.3

X +y 0.4

X -y 0.1
" P(y|+x)?

P(a,b

P(alp) = 2422

P(b)



Quiz: Conditional Probabilities

m P(+X | +y) ? 0.2/06=1/3
P(X,Y)
X Y P
+x +y 0.2 K P(-X | +y) ? 04/06=2/3
+X -y 0.3
X +y 0.4
X -y 0.1
= P(-y | +x) ? 03/05=3/5
P(a,b
P(ap) = 2420

P(b)



= Conditional distributions are probability distributions over
some variables given fixed values of others

P(W|T)

Conditional Distributions

Conditional Distributions

P(al|b) =

P(a,b)

P(b)

Joint Distribution

- P(W|T = hot)
wW P
sun 0.8
rain 0.2

P(W|T = cold)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 04
rain 0.6




P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s,T = c)
P(T = ¢)
P(W =s,T =c¢)
C  PW=sT=c¢)+P(W=r1T=2¢c)
0.2

0.2+40.3

P(W =s|T'=¢) =

—

PW =r,T =c¢)

P(T =¢)
. PW =r,T=c¢c)
- PW=sT=c¢c)+PW=rT=2c)
03
02403

PW=rT=c)=

0.6

P(W|T = ¢)

sun

rain




Normalization Trick

P(W =35,T =¢)

P(W =s|T=c) =

P(T' =c¢)
— P(W =s5,T=rc)
P(T7W) _P(W:SaT:C)+P(W:T,T:c)
0.2
= = 0.4
T A P 0.24 0.3 0 P(W|T — C)
hot su'n 0.4 — .
- — - sun 04
cold sun 0.2 — -
P W — ,T p— .
cold rain 0.3 P(W=rT=¢c)= ( P(TT: > c)

_ P(W =r,T = c)

T PW=sT=c)+P(W=rT=0c)
03
02403

0.6



Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection _

T W P matching the (make it sum to one) P(W’T T C)
hot sun 0.4 evidence T W P W p
hot rain 0.1 l cold sun 0.2 sun 04
cold >un 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3




" P(X | Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 04
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬁ



" P(X | Y=-y) ?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 04
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint
probabilities
matching the

evidence

ﬁ

X Y P
+X -y (0.3
-X -y (0.1

NORMALIZE the
selection
(make it sum to one)

ﬁ

X P
+X 0.75
-X 0.25




= (Dictionary) To bring or restore to a

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

é
Z=0.5

To Normalize

normal condition

W P
sun 04
rain 0.6

N

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5

cold sun 10
cold rain 15

Normalize

ﬂ
Z=50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Probabilistic Inference

Probabilistic inference: compute a desired @ <
probability from other known probabilities (e.g. ///

conditional from joint)

We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
"= P(ontime | no accidents, 5 a.m.) =0.95

= P(ontime | no accidents, 5 a.m., raining) = 0.80 @ -

= Observing new evidence causes beliefs to be updated




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
= Evidence variables: Ei1...E,=e1...€e X1, Xo,... Xp variables, too
- uery* variable:
Query ¢ All variables P(Q|€1 RN ek)

= Hidden variables: Hy...H,

= Example:
" Variables: arrival time, accident status, weather ///////
= P(arrival time | no accidents)

= Evidence: accident status
= Query: arrival time

= Hidden: weather
= P(arrival time | no accidents, rain)
= Evidence: accident status, weather

= Query: arrival time —
* Hidden: none ”




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
= Evidence variables: Ei1...E,=e1...€e X1, Xo,... Xn variables, too
- uery* variable:
Query ¢ All variables P(Q|€1 RN ek:)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

P
0.05

0.07
0.2 |

——
0.01 w

Z=ZP(Q’€1”‘€‘€)
P(Q,el...ek)zhzh P(Qahl---hrael---e/k) 1 )
1..-1p X1,X27Xn P(Q|€1 ek) — EP(Qael"'ek‘)




= P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




= P(W)?

query

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




= P(W)?

Inference by Enumeration

P(sun)=0.3+0.1+0.1+0.15=0.65

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain | 0.05
winter | cold sun 0.15
winter | cold rain | 0.20




= P(W)?

Inference by Enumeration

P(sun)=0.3+0.1+0.1+0.15=0.65
P(rain) =0.05 + 0.05 + 0.05 + 0.20 = 0.35

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain | 0.05
winter | cold sun 0.15
winter | cold rain | 0.20




Inference by Enumeration

evidence
\ /
= P(W | winter, hot)?
4
query

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter, hot)?

unnormalized P(sun | winter, hot) =0.10
unnormalized P(rain | winter, hot) = 0.05
P(sun | winter, hot) =0.10/0.15=2/3
P(rain | winter, hot) =0.05/0.15=1/3

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

evidence

\

= P(W | winter)?

4
query

hidden (unobserved) variable: T

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter)?

unnormalized P(sun, winter) = 0.1+ 0.15=0.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter)?

unnormalized P(sun, winter) = 0.1+ 0.15=0.25

unnormalized P(rain, winter) =0.05 + 0.20 = 0.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= P(W | winter)?

unnormalized P(sun | winter) =0.1+ 0.15=0.25

unnormalized P(rain | winter) = 0.05 + 0.20 = 0.25

P(sun | winter)=0.25/0.50=0.5
P(rain | winter) =0.25/0.50=0.5

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= QObvious problems:
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y)

« =




The Product Rule

P(y)P(z|y) = P(z,y)

= Example:
P(D|W) P(D, W)

P(W) D W P D W

R D wet sun 0.1 wet sun

un 0.8 dry sun 0.9 dry sun

i 7 ‘

cain 0.2 wet rain 0 wet rain

dry rain | 0.3 dry rain




The Chain Rule

= More generally, can (almost) always write any joint distribution as an
incremental product of conditional distributions

P(x1,xp,23) = P(x1)P(zp|x1)P(z3|x1,22)

P(xz1,xzo,...70n) = HP(CU,L'|£U1 e Ti—1)
1

= Why is this (almost) always true? P(x1)P(x2 |x1)P(X3 |X1, Xz)

/ T \

P(x,
(z,y) P(x1,x2)  P(x3, %5, %)

P(zly) =

P
P(y) (x1) PCr) PO )






Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y)= P(ylz) P(x)

= Dividing, we get:

P(y|x) P (effect|cause) P(cause)

P(x|y) = P(x) P(causeleffect) =

P(y) P (effect)

= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

" |nthe running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P (effect)

= Example:
= M: meningitis, S: stiff neck

P(4+m) = 0.0001 -
P(+s|4+m)=0.8 0P

givens
P(+s| —m) =0.01_
P _ P(+s|+m)P(+m) P(+s| 4+ m)P(+m) B 0.8 x 0.0001
(Fml+s) = P(+s) = P(4s| +m)P(+m) + P(+s| —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

P(+m | +s) = 0.008



Quiz: Bayes’ Rule

. P(D|W)
= Given:
P(W) D W P
R P wet sun 0.1
un 0.8 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?



Quiz: Bayes’ Rule

. P(D|W)
= Given:
P(W) D W P
R P wet sun 0.1
un 0.8 dry sun 0.9
ain 0.2 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ?

unnormalized P(sun|dry) = P(dry|sun) * P(sun) =0.9 * 0.8 =0.72
unnormalized P(rain|dry) = P(dry|rain) * P(rain) =0.3 * 0.2 = 0.06
P(sun|dry)=0.72/0.78 = 12/13

P(rain|dry)=0.06/0.78 = 1/13



Ghostbusters, Revisited

= Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)

= Let’s say this is uniform

= Sensor reading model: P(R | G)

= Given: we know what our sensors do
= R =reading color measured at (1,1) 0.11 0.11
= E.g. P(R = yellow | G=(1,1)) = 0.1
= We can calculate the posterior 0.17 0.10
d.lstrlbutlon !D(G | r). over gho’st locations P(GIN)
given a reading using Bayes’ rule: 0.09 | 017 | 0.10

unnormalized P(g|r) = P(r|g)P(g) 0.17

[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Ghostbusters with Probability




Next Time: Bayes’ Nets
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