
CS 188: Artificial Intelligence

Probability

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ Midterm
▪ Wednesday March 19, 7-9pm

▪ Use this form to request alternate times by 2/27/25 (Today) at 11:59 PT

▪ Check Ed and Calendar for more midterm logistics/prep sessions, and see 
exam logistics page near top of course web site for more info. 

▪ HW5
▪ Due on Wednesday 3/5/25 at 11:59 PT

▪ Project 3
▪ Due on Friday 3/7/25 at 11:59 PT

https://docs.google.com/forms/d/e/1FAIpQLSfZetO5u34T7EEI_r5ab1AUXJCcYngqpWCLR8XW8gg1KUW_SA/viewform
https://inst.eecs.berkeley.edu/~cs188/sp25/exam/


CS188 Outline

▪ We’re done with Parts 1 & 2: Search, Planning, and RL!

▪ Part 3: Probabilistic Reasoning
▪ Form and update beliefs:

▪ Diagnosis

▪ Speech recognition

▪ Tracking objects

▪ Robot mapping

▪ Genetics

▪ Error correcting codes

▪ Explain human cognition

▪ … lots more!

▪ Part 4: Machine Learning



Today

▪ Probability

▪ Random Variables

▪ Joint and Marginal Distributions

▪ Conditional Distribution

▪ Product Rule, Chain Rule, Bayes’ Rule

▪ Inference by Enumeration

▪ You’ll need all this stuff A LOT for the 
next few weeks, so make sure you go 
over it now!



Inference in Ghostbusters

▪ A ghost is in the grid 
somewhere

▪ Sensor readings tell how 
close a square is to the 
ghost

▪ On the ghost: red

▪ 1 or 2 away: orange

▪ 3 or 4 away: yellow

▪ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

▪  Sensors are noisy, but we know P(Color | Distance)

[Demo: Ghostbuster – no probability (L12D1) ]



Video of Demo Ghostbuster – No probability



Uncertainty

▪ General situation:

▪ Observed variables (evidence): Agent knows certain things 
about the state of the world (e.g., sensor readings or 
symptoms)

▪ Unobserved (hidden) variables: Agent needs to reason 
about other aspects (e.g. where an object is or what 
disease is present)

▪ Model: Agent knows something about how the known 
variables relate to the unknown variables

▪ Probabilistic reasoning and inference gives us a 
framework for managing our beliefs and knowledge



Random Variables

▪ A random variable is some aspect of the world about 
which we (may) have uncertainty

▪ R = Is it raining?

▪ T = Is it hot or cold?

▪ D = How long will it take to drive to work?

▪ L = Where is the ghost?

▪ We denote random variables with capital letters

▪ Like variables in a CSP, random variables have domains

▪ R in {true, false}   (often write as {+r, -r})

▪ T in {hot, cold}

▪ D in [0, )

▪ L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

▪ Associate a probability with each value of that random variable

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather: 

𝑃 𝑊
𝑃 𝑇



Shorthand notation:

OK if all domain entries are unique

Probability Distributions

▪ Unobserved random variables have distributions

▪ A distribution is a TABLE of probabilities of values

▪ A probability (of a lower case value) is a single number:

▪ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

𝑃 𝑊 = 𝑟𝑎𝑖𝑛 = 0.1

𝑃 𝑊𝑃 𝑇
𝑃 ℎ𝑜𝑡 same as 𝑃 𝑇 = ℎ𝑜𝑡

𝑃 𝑐𝑜𝑙𝑑 same as 𝑃 𝑇 = 𝑐𝑜𝑙𝑑

𝑃 𝑟𝑎𝑖𝑛 same as 𝑃 𝑊 = 𝑟𝑎𝑖𝑛

…



Joint Distributions

▪ A joint distribution over a set of random variables:
 specifies a real number for each assignment (or outcome): 

▪ Must obey:

▪ Size of distribution if n variables with domain sizes d?

▪ For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

𝑃 𝑇, 𝑊

𝑃 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑁 = 𝑥𝑁

𝑃 𝑥1,  𝑥2 , … , 𝑥𝑁

𝑋1, 𝑋2, … , 𝑋𝑁



Probabilistic Models

▪ A probabilistic model is a joint distribution 
over a set of random variables

▪ Probabilistic models:
▪ (Random) variables with domains 
▪ Assignments are called outcomes
▪ Joint distributions: say whether assignments 

(outcomes) are likely
▪ Normalized: sum to 1.0
▪ Ideally: only certain variables directly interact

▪ Constraint satisfaction problems:
▪ Variables with domains
▪ Constraints: state whether assignments are 

possible
▪ Ideally: only certain variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W



Events

▪ An event is a set E of outcomes

▪ From a joint distribution, we can 
calculate the probability of any event

▪ Probability that it’s hot AND sunny?

▪ Probability that it’s hot?

▪ Probability that it’s hot OR sunny?

▪ Typically, the events we care about 
are partial assignments, like P(T=hot)

 

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

▪ P(+x, +y) ?

▪ P(+x) ?

▪ P(-y OR +x) ?

 

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Quiz: Events

▪ P(+x, +y) ?

▪ P(+x) ?

▪ P(-y OR +x) ?

 

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

0.2

0.2 + 0.3 = 0.5

0.1 + 0.3 + 0.2 = 0.6



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate random variables 

▪ Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃 𝑡 = 

𝑤

𝑃(𝑡, 𝑤)

𝑃 𝑤 = 

𝑡

𝑃(𝑡, 𝑤)

𝑃 𝑇, 𝑊

𝑃 𝑇

𝑃 𝑊

𝑃 𝑋1 = 𝑥1 = 

𝑥2

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2)

hidden (unobserved) variables



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y

𝑃 𝑥 = 

𝑦

𝑃(𝑥, 𝑦)

𝑃 𝑦 = 

𝑥

𝑃(𝑥, 𝑦)

𝑃 𝑋, 𝑌

𝑃 𝑋

𝑃 𝑌



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x 0.5

-x 0.5

Y P

+y 0.6

-y 0.4

𝑃 𝑥 = 

𝑦

𝑃(𝑥, 𝑦)

𝑃 𝑦 = 

𝑥

𝑃(𝑥, 𝑦)

𝑃 𝑋, 𝑌

𝑃 𝑋

𝑃 𝑌



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities

▪ In fact, this is taken as the definition of a conditional probability

P(b)P(a)

P(a,b)

query

evidence

= (proportion of b where a holds)



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities

▪ In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)

= (proportion of b where a holds)



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

▪ P(+x | +y) ?

▪ P(-x | +y) ?

▪ P(-y | +x) ?

 



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

▪ P(+x | +y) ?

▪ P(-x | +y) ?

▪ P(-y | +x) ?

 

0.2 / 0.6 = 1/3

0.4 / 0.6 = 2/3

0.3 / 0.5 = 3/5



Conditional Distributions

▪ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions
Joint Distribution



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun

rain



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Quiz: Normalization Trick

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

▪ P(X | Y=-y) ?



Quiz: Normalization Trick

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

▪ P(X | Y=-y) ?

X Y P

+x -y 0.3

-x -y 0.1

X P

+x 0.75

-x 0.25



▪ (Dictionary) To bring or restore to a normal condition

▪ Procedure:

▪ Step 1: Compute Z = sum over all entries

▪ Step 2: Divide every entry by Z

▪ Example 1

To Normalize

All entries sum to ONE

W P

sun 0.2

rain 0.3 Z = 0.5

W P

sun 0.4

rain 0.6

▪ Example 2

T W P

hot sun 20

hot rain 5

cold sun 10

cold rain 15

Normalize

Z = 50

Normalize

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Inference

▪ Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint)

▪ We generally compute conditional probabilities 
▪ P(on time | no reported accidents) = 0.90

▪ These represent the agent’s beliefs given the evidence

▪ Probabilities change with new evidence:
▪ P(on time | no accidents, 5 a.m.) = 0.95

▪ P(on time | no accidents, 5 a.m., raining) = 0.80

▪ Observing new evidence causes beliefs to be updated



Inference by Enumeration

▪ General case:
▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Example:

▪ Variables: arrival time, accident status, weather

▪ P(arrival time | no accidents)
▪ Evidence: accident status

▪ Query: arrival time

▪ Hidden: weather

▪ P(arrival time | no accidents, rain)
▪ Evidence: accident status, weather

▪ Query: arrival time

▪ Hidden: none



Inference by Enumeration

▪ General case:
▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration

▪ P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

▪ P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

query



Inference by Enumeration

▪ P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun) = 0.3 + 0.1 + 0.1 + 0.15 = 0.65



Inference by Enumeration

▪ P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun) = 0.3 + 0.1 + 0.1 + 0.15 = 0.65

P(rain) = 0.05 + 0.05 + 0.05 + 0.20 = 0.35



Inference by Enumeration

▪ P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

query

evidence



Inference by Enumeration

▪ P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

unnormalized P(sun | winter, hot) = 0.10

unnormalized P(rain | winter, hot) = 0.05

P(sun | winter, hot) = 0.10 / 0.15 = 2/3

P(rain | winter, hot) = 0.05 / 0.15 = 1/3



Inference by Enumeration

▪ P(W | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

query

evidence

hidden (unobserved) variable: T



Inference by Enumeration

▪ P(W | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

unnormalized P(sun, winter) = 0.1 + 0.15 = 0.25



Inference by Enumeration

▪ P(W | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

unnormalized P(sun, winter) = 0.1 + 0.15 = 0.25

unnormalized P(rain, winter) = 0.05 + 0.20 = 0.25



Inference by Enumeration

▪ P(W | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

unnormalized P(sun | winter) = 0.1 + 0.15 = 0.25

unnormalized P(rain | winter) = 0.05 + 0.20 = 0.25

P(sun | winter) = 0.25 / 0.50 = 0.5

P(rain | winter) = 0.25 / 0.50 = 0.5



▪ Obvious problems:

▪ Worst-case time complexity O(dn) 

▪ Space complexity O(dn) to store the joint distribution

Inference by Enumeration



The Product Rule

▪ Sometimes have conditional distributions but want the joint



The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

▪ More generally, can (almost) always write any joint distribution as an 
incremental product of conditional distributions

▪ Why is this (almost) always true? 𝑃 𝑥1 𝑃 𝑥2 𝑥1 𝑃 𝑥3 𝑥1, 𝑥2

𝑃 𝑥1
𝑃 𝑥1, 𝑥2

𝑃 𝑥1

𝑃 𝑥3, 𝑥2, 𝑥1

𝑃 𝑥1, 𝑥2



Bayes Rule



Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables:

▪ Dividing, we get:

▪ Why is this at all helpful?

▪ Lets us build one conditional from its reverse
▪ Often one conditional is tricky but the other one is simple
▪ Foundation of many systems we’ll see later (e.g. ASR, MT)

▪ In the running for most important AI equation!



Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability:

▪ Example:
▪ M: meningitis, S: stiff neck

Example
givens

P(+m | +s) ≅ 0.008



Quiz: Bayes’ Rule

▪ Given:

▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Quiz: Bayes’ Rule

▪ Given:

▪ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

unnormalized P(sun|dry) = P(dry|sun) * P(sun) = 0.9 * 0.8 = 0.72

unnormalized P(rain|dry) = P(dry|rain) * P(rain) = 0.3 * 0.2 = 0.06

P(sun|dry)= 0.72/0.78 = 12/13

P(rain|dry)= 0.06/0.78 = 1/13



Ghostbusters, Revisited

▪ Let’s say we have two distributions:
▪ Prior distribution over ghost location: P(G)

▪ Let’s say this is uniform

▪ Sensor reading model: P(R | G)
▪ Given: we know what our sensors do

▪ R = reading color measured at (1,1)

▪ E.g. P(R = yellow | G=(1,1)) = 0.1

▪ We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]

unnormalized 𝑃 𝑔 𝑟 = 𝑃 𝑟 𝑔 𝑃(𝑔)

P(G)

P(G|r)



Video of Demo Ghostbusters with Probability



Next Time: Bayes’ Nets
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