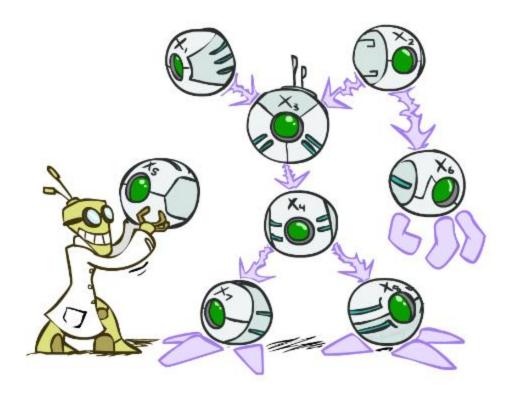
CS 188: Artificial Intelligence

Bayes' Nets



Announcements

Midterm

- Wednesday March 19, 7-9pm
- Check Ed and Calendar for more midterm logistics/prep sessions, and see exam logistics page near top of course web site for more info.

HW5

- Due on Wednesday 3/5/25 at 11:59 PT
- Project 3
 - Due on Friday 3/7/25 at 11:59 PT

Recap: Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents)
 - P(on time | no accidents, 5 a.m.)
 - ...
 - These represent the agent's beliefs given the evidence
 - Observing new evidence causes beliefs to be updated
- Saw Inference by Enumeration as our first algorithm to do this

Recap: Probability Distributions

• Joint Distribution: P(X, Y, ...)

Example:

P	T(T,	W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

• Marginal Distribution P(X):

$$P(x) = \sum_{y} P(x, y)$$

- Conditional Distribution P(X|y):
 - P(X|Y) denotes a collection of distributions for each value y

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Recap: Probability Rules

Product Rule:

$$P(y)P(x|y) = P(x,y)$$

Chain Rule:

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Bayes Rule:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$
 $P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$

Example: Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

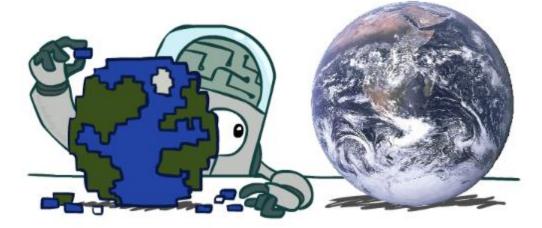
$$P(+s|+m) = 0.8$$
 Example givens
$$P(+s|-m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

$$P(+m \mid +s) \cong 0.008$$

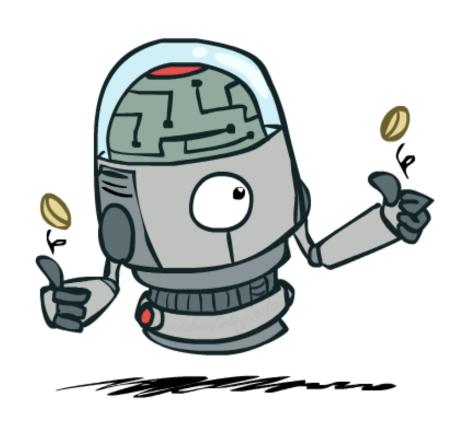
Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box



- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence



Independence

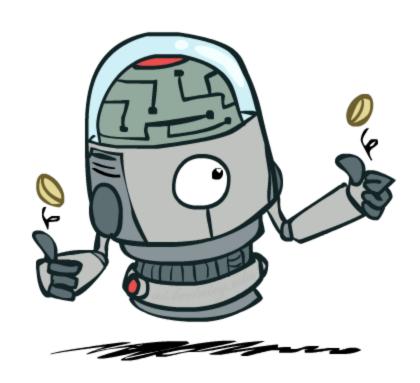
Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

 $P_1(T,W)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
hot	0.5
cold	0.5

P(W)

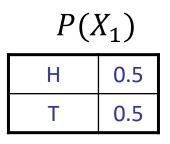
W	Р
sun	0.6
rain	0.4

 $P_2(T,W)$

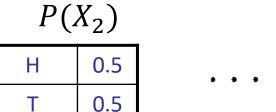
Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

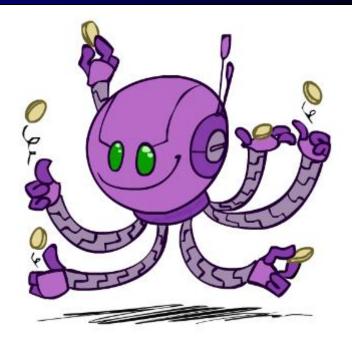
N fair, independent coin flips:

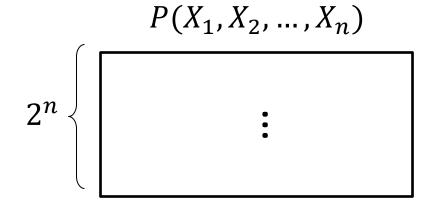


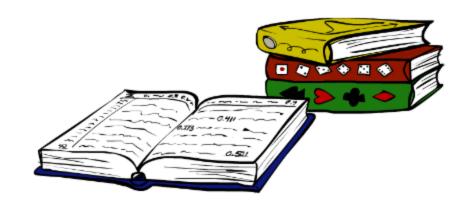
Н	0.5
Т	0.5

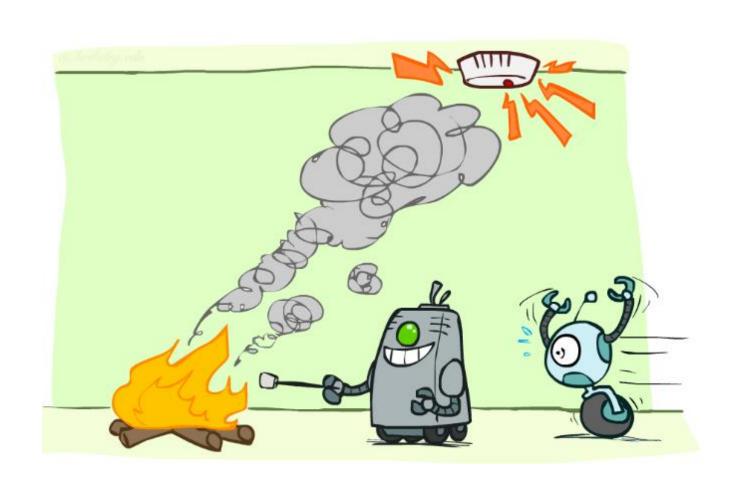


$$P(X_n)$$
H 0.5
T 0.5

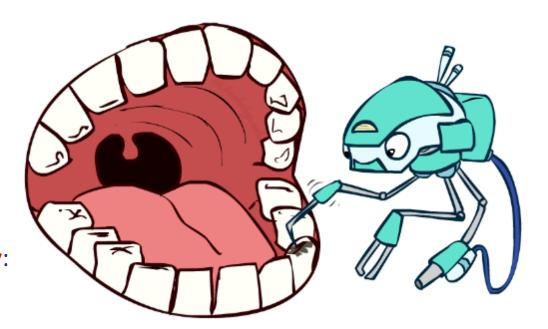








- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily



- Unconditional (absolute) independence very rare between variables in the same system (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- ${lacktriangleright}$ X is conditionally independent of Y given Z written $\, X \! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid \!\! Z \,\!\!\!$ if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

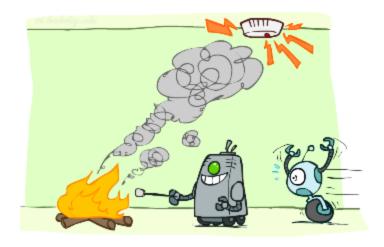
$$\forall x, y, z : P(x|y, z) = P(x|z)$$

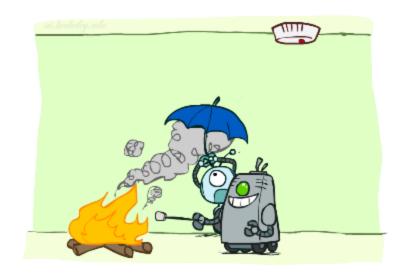
or

$$\forall x, y, z : P(y|x, z) = P(y|z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm





- Chain rule: $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) ...$
- Standard decomposition:

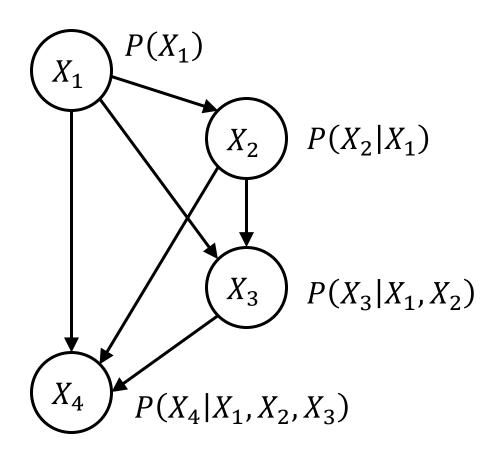
$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

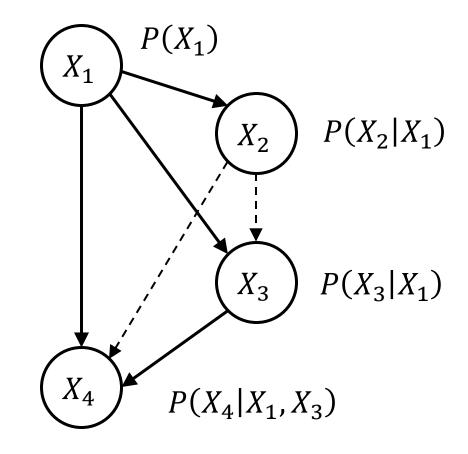
With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Bayes'nets / graphical models help us express conditional independence assumptions

• Chain rule: $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)$... works in any order of X_i Compete Dependency graph: Partial Dependency Graph:

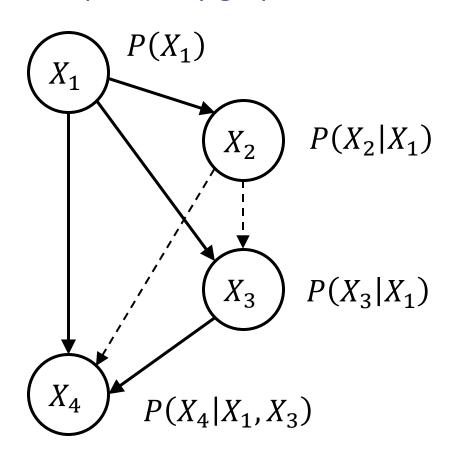


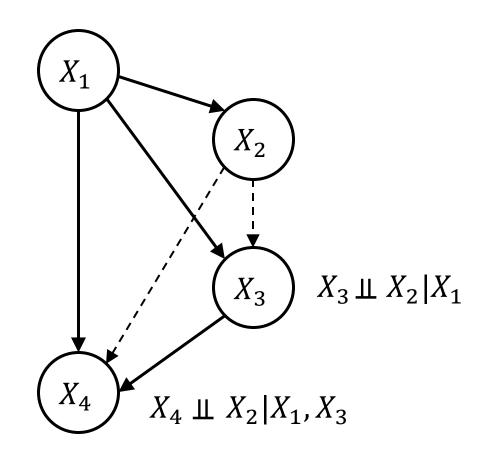


• Chain rule: $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) ...$

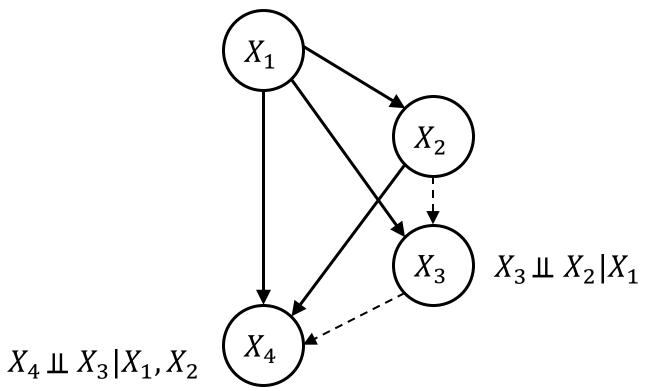
Partial Dependency graph:

Independences from the Graph:

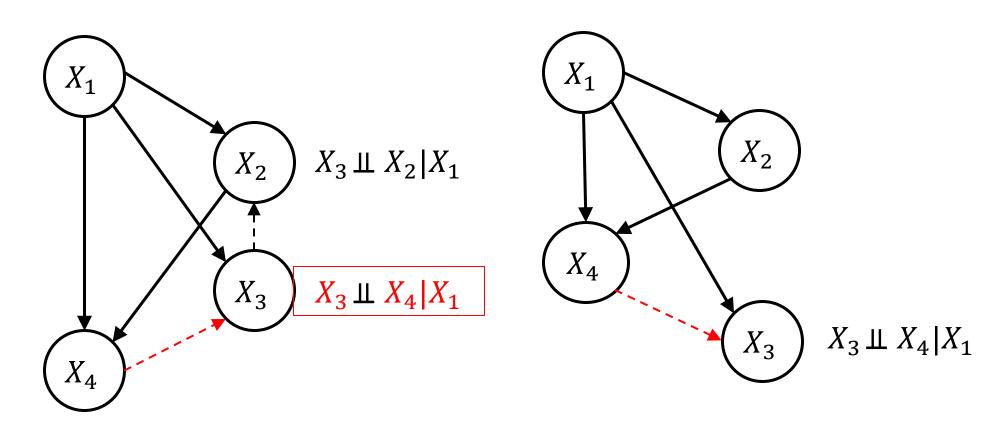




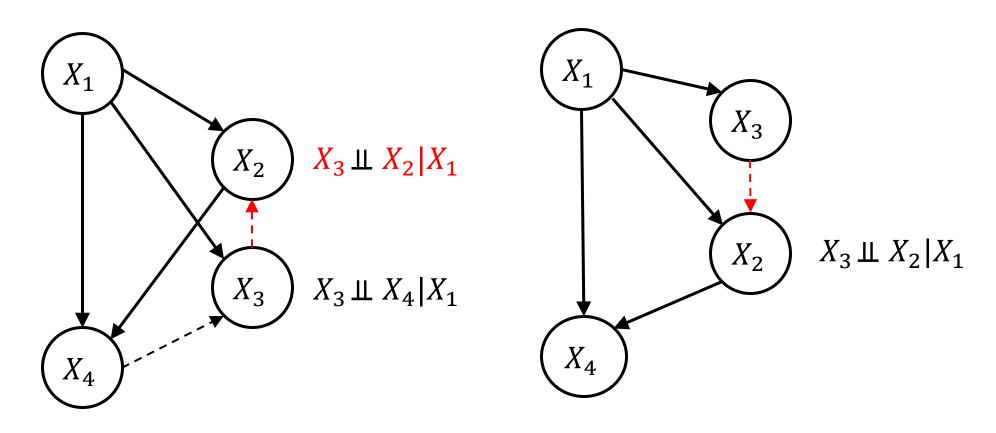
 In general a node is conditionally independent from all its non-descendents in the graph, given its parents.



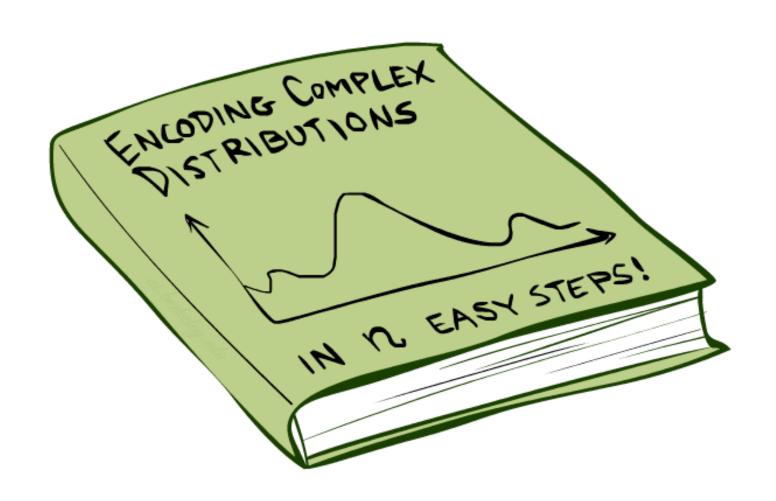
 In general a node is conditionally independent from all its non-descendents in the graph, given its parents.



In general a node is conditionally independent from all its non-descendents in the graph, given its parents.

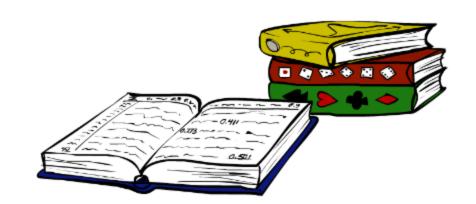


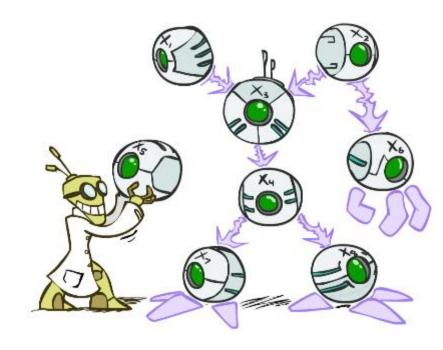
Bayes'Nets: Big Picture



Bayes' Nets: Big Picture

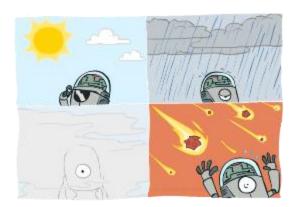
- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified



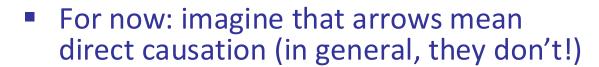


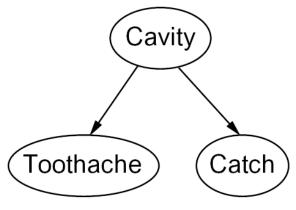
Graphical Model Notation

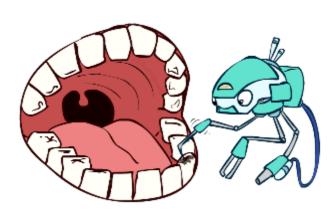
- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)



- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

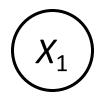




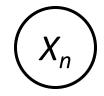


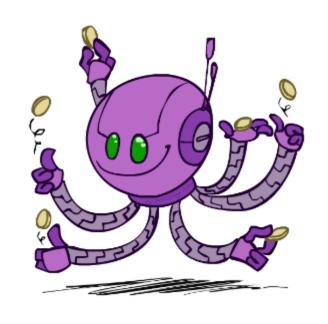
Example: Coin Flips

N independent coin flips



. . .





No interactions between variables: absolute independence

Example: Traffic

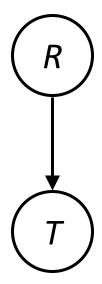
Variables:

R: It rains

■ T: There is traffic

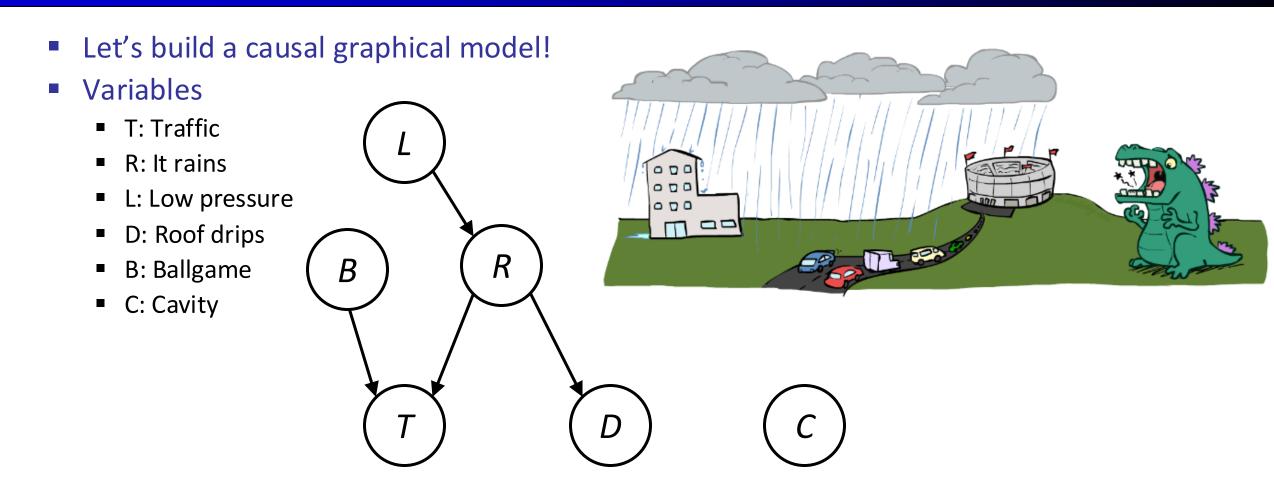
Model 1: independence

Model 2: rain causes traffic

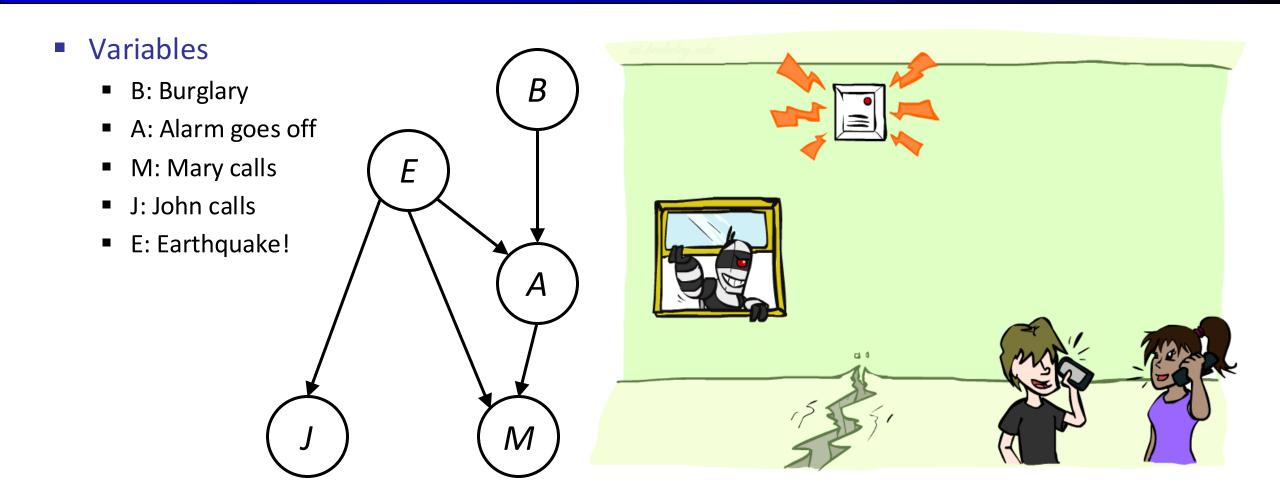


Why is an agent using model 2 better?

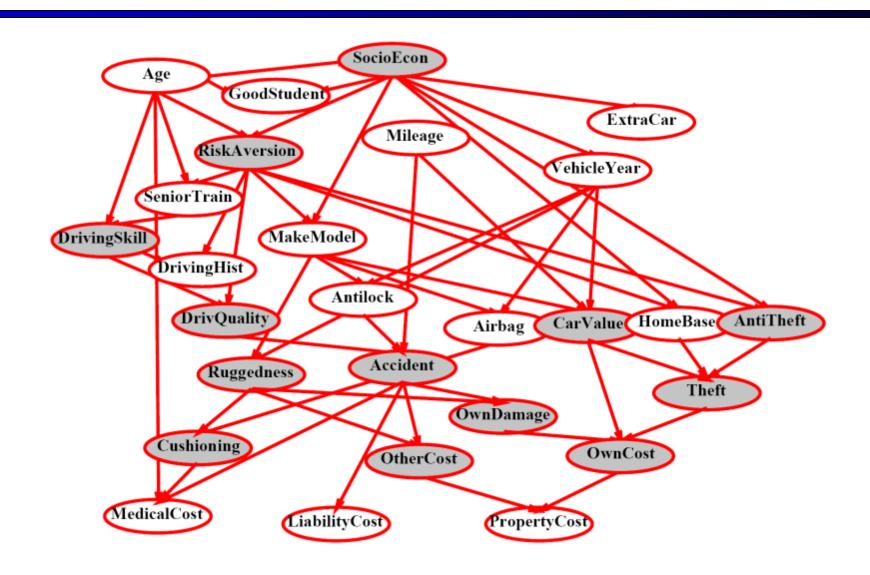
Example: Traffic II



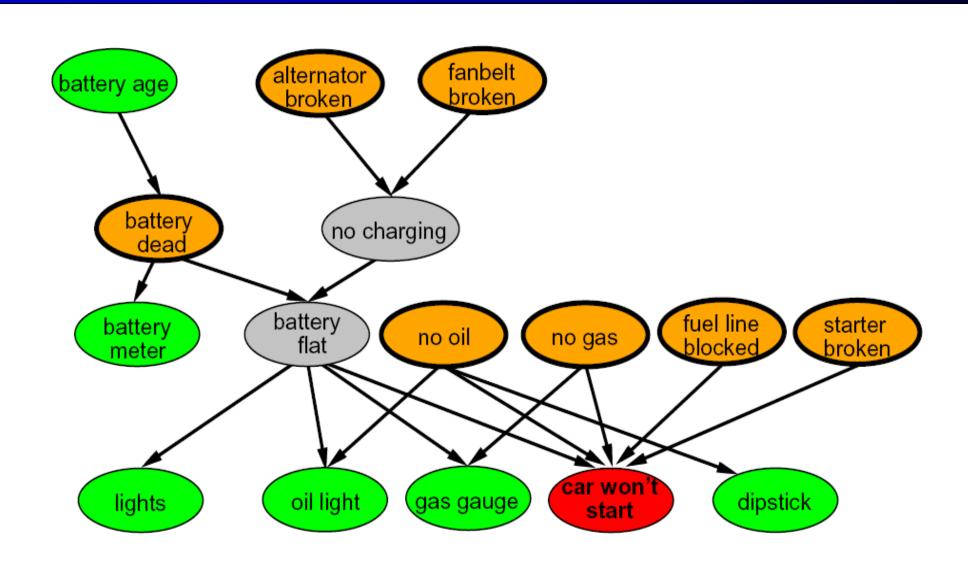
Example: Alarm Network



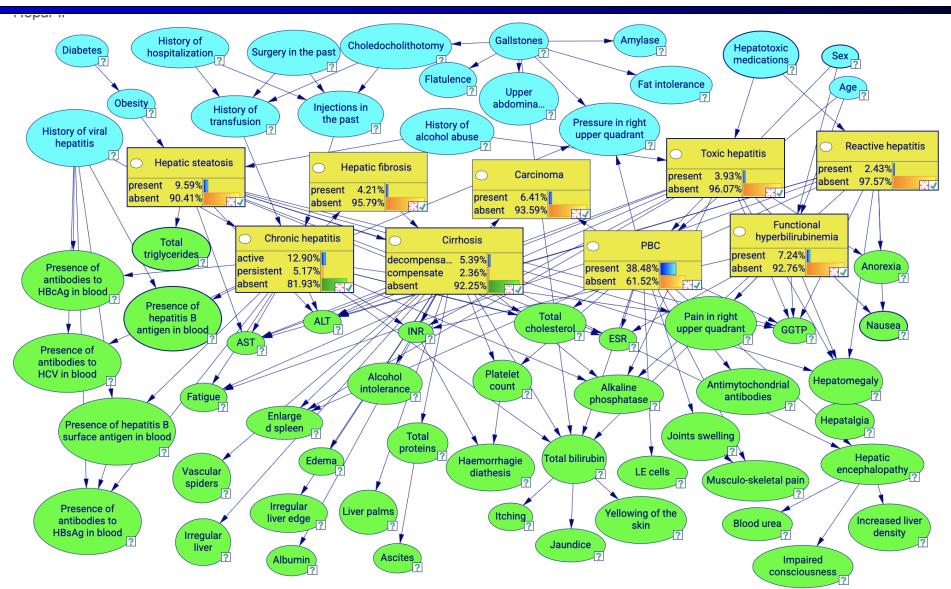
Example Bayes' Net: Insurance



Example Bayes' Net: Car



Example Bayes' Net: Medical Diagnosis



https://demo.bayesfusion.com/bayesbox.html

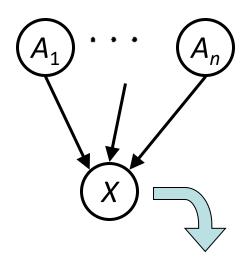
Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1, \dots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process



$$P(X|A_1, ... A_n)$$

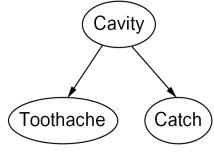
A Bayes net = Topology (graph) + Local Conditional Probabilities

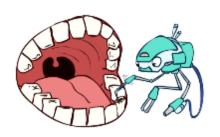
Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, ... x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))$$

$$P(+cavity, +catch, -toothache)$$





Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, ... x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, ... x_n) = \prod_{i=1}^n P(x_i | x_1 ... x_{i-1})$
- Assume conditional independences: $P(x_i|x_1...x_{i-1}) = P(x_i|parents(X_i))$
 - → Consequence: Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(X_1)$$

h	0.5
t	0.5

\boldsymbol{D}	(V)
Γ	Λ	2 /

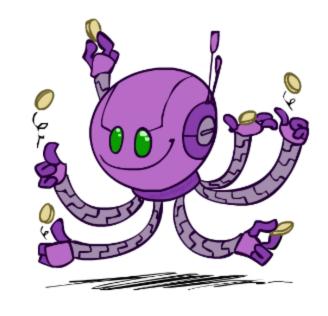
h	0.5
t	0.5

$$P(X_3)$$

h	0.5
t	0.5

$$P(X_4)$$

h	0.5
t	0.5

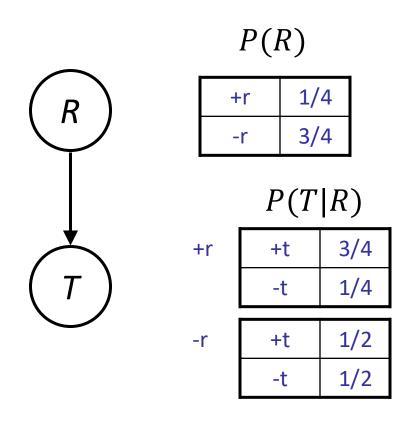


$$P(h, h, t, h) = 0.5^4$$

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

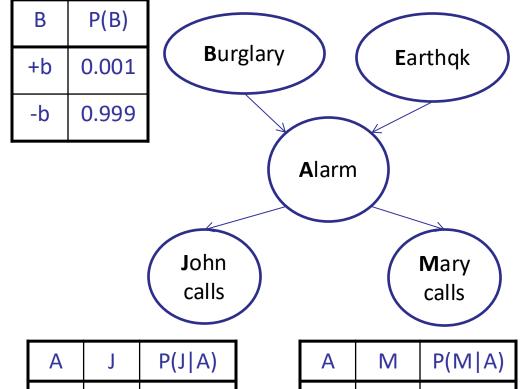


$$P(x_1, x_2, ... x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))$$

$$P(+r,-t) = P(+r)P(-t|+r)$$
$$= \frac{1}{4} * \frac{1}{4} = \frac{1}{16}$$



Example: Alarm Network



0.9

0.1

0.05

0.95

+a

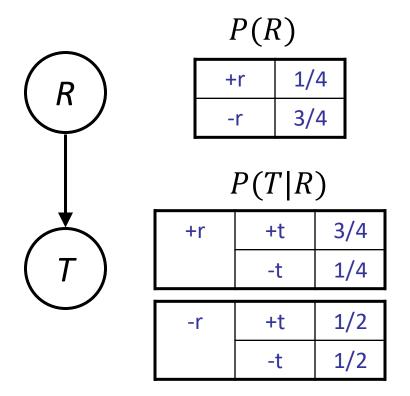
Е	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)	
+a	+m	0.7	
+a	-m	0.3	
-a	+m	0.01	
-a	-m	0.99	

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Traffic

Causal direction

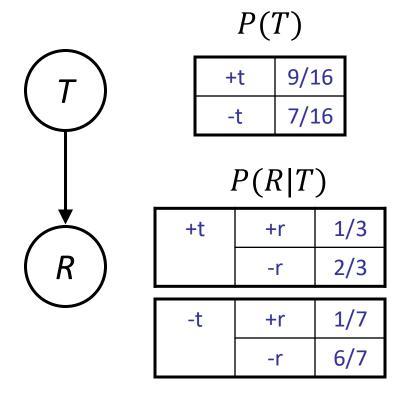


P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?



P(R,T)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

$$P(+r,-t) =$$

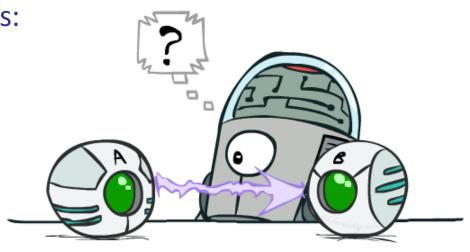
$$P(-t)P(+r|-t)$$

$$=\frac{7}{16} * \frac{1}{7} = \frac{1}{16}$$

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1 ... x_{i-1}) = P(x_i|parents(X_i))$$



Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

