CS 188: Artificial Intelligence

Bayes’ Nets

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

= Midterm

» Wednesday March 19, 7-9pm

* Check Ed and Calendar for more midterm logistics/prep sessions, and see
exam logistics page near top of course web site for more info.

= HWS5
= Due on Wednesday 3/5/25 at 11:59 PT

= Project 3
= Due on Friday 3/7/25 at 11:59 PT


https://inst.eecs.berkeley.edu/~cs188/sp25/exam/

Recap: Probabilistic Inference

" Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities

= P(ontime | noreported accidents)
= P(ontime | no accidents, 5 a.m.)

= These represent the agent’s beliefs given the evidence
= Observing new evidence causes beliefs to be updated

= Saw Inference by Enumeration as our first
algorithm to do this



Recap: Probability Distributions

P(T, W)

= Joint Distribution: P(X,Y, ...) Example:
T W P
hot sun 0.4
= Marginal Distribution P(X): hot | rain | 0.1
cold | sun 0.2
P(X) B z P(x' y) cold | rain 0.3

y

= Conditional Distribution P(X|y):

= P(X|Y) denotes a collection of distributions for each value y

P(x,y)
P(y)

P(x|y) =



Recap: Probability Rules

= Product Rule:
P(y)P(zly) = P(x,y)

= Chain Rule:
P(x1,20,23) = P(x1)P(z2|z1)P(x3|1,22)
P(z1,22,...2n) = || P(@ilay ... 2i—1)
i

= Bayes Rule:

P(effect P
P(y\m)P(m) P(canse|effect) — (effect|cause) P(cause)

Plaly) = P(y) P (effect)



Example: Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)
P(effect)

P(causeleffect) =

= Example:
= M: meningitis, S: stiff neck

P(—I—m) — 0.0001 - |

xampie
P(+s|+m) =08 o
P(—I—s] — m) — (0.01 |

P(+s| +m)P(+m) P(+s| 4+ m)P(+m) 0.8 x 0.0001

P - = =
(+m] +5) Plts) P(+s] +m)P(+m) + P(+s| —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

P(+m | +s) = 0.008



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence




Independence

= Two variables are independent if:

vx,y : P(x,y) = P(x)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Vx,y:P(xly) = P(x)

» Wewrite: X Il Y

" |ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P, (T, W)

T W P
hot sun 0.4
hot rain | 0.1
cold sun | 0.2

cold rain | 0.3

P, (T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun 0.3

cold rain | 0.2

P(T)
T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

P(X,) P(X,) P(Xy)
H 0.5 H 0.5 . H 0.5
T 0.5 T 0.5 T 0.5

N~

—

P(X, X5, ..., X,)

2™




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare between
variables in the same system (why?)

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= Xis conditionally independent of Y given Z written X Il Y'|Z
if and only if:
Vx7v,z:P(xylz) =P(x|z)P(y|z)
or, equivalently, if and only if
Vx,v,2:P(x|yz)=P(x|z)
or
Vxy,z:P(ylx,z) = P(yl|z)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= \What about this domain:

" Fire
= Smoke
= Alarm




Conditional Independence and the Chain Rule

= Chain rule: P(Xy, X, .., Xp,) = P(X))P(X,|X)P(X5] Xy, Xs) ...

= Standard decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella]Rain)

= Bayes’nets / graphical models help us express conditional independence assumptions



Conditional Independence and the Chain Rule

= Chainrule: P(X{, X5, ..., X,;) = P(X{)P(X,|X{)P(X3|X{,X5) ...works in any order of X;
Compete Dependency graph: Partial Dependency Graph:




Conditional Independence and the Chain Rule

= Chain rule: P(Xy, X, .., Xp,) = P(X))P(X,|X)P(X5] Xy, Xs) ...

Partial Dependency graph: Independences from the Graph:




Conditional Independence and the Chain Rule

" |n general a node is conditionally independent from all its non-descendents in the
graph, given its parents.




Conditional Independence and the Chain Rule

" |n general a node is conditionally independent from all its non-descendents in the
graph, given its parents.




Conditional Independence and the Chain Rule

" |n general a node is conditionally independent from all its non-descendents in the
graph, given its parents.




Bayes'Nets: Big Picture




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

" |ocal interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)

= Arcs: interactions

= Similar to CSP constraints @
®» |ndicate “direct influence” between variables
Toothache @

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean
direct causation (in general, they don’t!)



Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:

= R: [t rains
= T:There is traffic

= Model 1: independence = Model 2: rain causes traffic

®

0 ¢

= Why is an agent using model 2 better?



Example: Traffic Il

= Let’s build a causal graphical model!

= Variables
= T: Traffic
R: It rains
L: Low pressure
D: Roof drips
B: Ballgame
C: Cavity




Example: Alarm Network
= Variables A
= B:Burglary @ ® N—g
A: Alarm goes off tJ\f? =
M: Mary calls e
J: John calls
E: Earthquake! °

7%




Net: Insurance

Example Bayes’




Example Bayes’ Net: Car

alternator fanbelt
broken broke

fuel line starter
blocked hroke



Example Bayes’ Net: Medical Diaghosis

.
] History of . Gallstones
hospitalization Surgery in the past  Choledocholithotomy >
? - 2
Flatulence
? Upper
History of Injections in abdomina... _

History of viral
hepatitis

transfusion =

the past

History of

alcohol abuse
2

Amylase
?

Hepatotoxic
medications

Fat intolerance
?

Pressure in right
upper quadrant

2
—_ | Toxic hepatitis ©
A

Reactive hepatitis

present 2.43%)|

?
~.[() Hepatic steatosis ® [sielesd 7
_ () epatic fibrosis e Carcinoma present 3.93%|] present 2.43%
= 93233” present  4.21%| st 6AT] absent 96.07% [/ bl SRF]
absent  SU.& 1oy bsent 95.79% - gy
N b SEE] absent 93.59% [
7 P Functional
Total () Chronic hepatitis @ Cirrhosis — o < hyperbilirubinemia
. . - - T
triglyceride - e 12.90%]] decompensa... 5.39%] __[present 7.24%) " }
Prt‘?gegf:e T persistent 5.17% [~ |compensate  2.36% present 38.48% | absent 92.76% /] norexlao
antibodies to bsent 61.52% ; :
absent 81.93% : 1 5 absen
HBCAG in blood _ __mF absent 92.25% JF 75 (1]
) Presence of
hepatitis B ALT Total Pain in right
antigen in blood ? INR cholestero — upper quadrant GGTP Nausea',
? AST ? = ESR = ? ? -
Presence of ? !
antibodies to
HCV in blood Alcohol Platelet
q intolerance count Alkaline Antimytochondrial Hepatomegaly
Fatlgueo ? phosphatase — antibodies ?
) Enlarge ] .
Presence of hepatitis B d splegen . . . Hepatalglao
surface antigen in blood £ Total Joints swelling :
> proteins 2 .
) Edema ") Haemorrhagie  (Total bilirubin Hepatic
Vascular ? diathesis 2 LE cells ) encephalopathy =
spiders ? Musculo-skeletal pain £
5
Presence of Irregular s )
. palms i Yell f th
antibodies to liver edge = ftchin 5 € O“QEI%O € Blood urea Increased liver
HBsAg in blood . Irregular - : : ' ? density
- liver ) Jaundice
? Albumin Asmtesq ? Impaired
? . consciousness _

https://demo.bayesfusion.com/bayesbox.html



Bayes’ Net Semantics




Bayes’ Net Semantics ) ILEEW

= A set of nodes, one per variable X
= A directed, acyclic graph
= A conditional distribution for each node

= A collection of distributions over X, one
for each combination of parents’ values

P(X|aq,...ay)

P(X|A4, ... A,)

= CPT: conditional probability table

I”

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs =)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

" To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together: @
n
P(xy,x,..%,) = HP(xi|parents(Xi)) @
i=1

= Example:

P (4cavity, +catch, —toothache)




)

f

Probabilities in BNs

{

= Why are we guaranteed that setting

n
P(xy,xy,..%,) = 1_[ P(x;|parents(X;))
i=1

results in a proper joint distribution?
= Chain rule (valid for all distributions): P (xy, X5, ... X,) = [112q P(xi| %1 o Xi—1)

= Assume conditional independences: P(x;|x; ...x;_1) = P(x;|parents(X;))

— Consequence: Not every BN can represent every joint distribution

* The topology enforces certain conditional independencies

-
T
I .

My Lo

[l
Ay,




Example: Coin Flips

OO0

P(X1) P(X3) P(X3) P(X4)
h |05 h |05 h |os h |05
t |05 t |05 t |05 t |05
P(h,h,t,h) = 0.5* P(xy, %5, ... xn) = [1~1 P(x;|parents(X;))

Only distributions whose variables are absolutely independent can be
represented by a Bayes ~net with no arcs.



Example: Traffic

n
P(xy,xy,..x,) = 1_[ P(x;|parents(X;))
i=1

>

P(R)
+r 1/4
P e P(+r,—t) = P(+r)P(—t| + 1)
1 1 1
P(T|R) =2 s = —
4 4 16
+t 3/4
-t 1/4
+t 1/2
-t 1/2




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | + 0.9
+a -j 0.1
-a + 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002

-e | 0.998

B | E| A | PA|BE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b -e -a 0.999




®

= Causal direction

P(R)

+r

1/4

3/4

P(T|

R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T,R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




>

Example: Reverse Traffic

= Reverse causality?

P(T)

+t

9/16

7/16

P(RI|T)

+t

+r

1/3

2/3

+r

1/7

6/7

T

"

b
| |

P(R,T)
+r +t 3/16
+r -t 1/16
+t 6/16
-t 6/16

P(+r,—t) =

P(—t)P(+r| —1t)

7 1 1
_*_ —_— —
7

~ 16 ~ 16



Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;lxq ...x;—1) = P(x;|parents(X;))



Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution
= Today:

= First assembled BNs using an intuitive notion of
conditional independence as causality

= Then saw that key property is conditional
independence 7%

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)
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