
CS 188: Artificial Intelligence

Bayes’ Nets: Independence

[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]



Announcements

▪ Midterm
▪ Wednesday March 19, 7-9pm

▪ Check Ed and Calendar for more midterm logistics/prep sessions, and see 
exam logistics page near top of course web site for more info. 

▪ HW6
▪ Due on Wednesday 3/12/25 at 11:59 PT

▪ Project 3
▪ Due on Friday 3/7/25 at 11:59 PT

https://inst.eecs.berkeley.edu/~cs188/sp25/exam/


Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule 

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

▪ A Bayes’ net is an

 efficient encoding

 of a probabilistic

 model of a domain

▪ Questions we can ask:

▪ Modeling: what BN is most appropriate for a given domain?

▪ Representation: given a BN graph, what kinds of distributions can it encode?

▪ Inference: given a fixed BN, what is P(X | e)?



Bayes’ Net Semantics

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination of 
parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, multiply all 
the relevant conditionals together:

Recall, general case:



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Size of a Bayes’ Net

▪ How big is a joint distribution over N 
Boolean variables?

2N

▪ How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

▪ Both give you the power to calculate

▪ BNs: Huge space savings!

▪ Also easier to elicit local CPTs

▪ Also faster to answer queries (coming) 



Bayes’ Nets

▪ Representation

▪ Conditional Independences

▪ Probabilistic Inference

▪ Learning Bayes’ Nets from Data



Conditional Independence

▪ X and Y are independent if

▪ X and Y are conditionally independent given Z

▪ (Conditional) independence is a property of a distribution

▪ Example: 



Bayes Nets: Assumptions

▪ Assumptions we make with Bayes net graph:

▪ Beyond above “chain rule → Bayes net” conditional 
independence assumptions 

▪ Often additional conditional independences

▪ Many can also be determined from just the graph

▪ Important for modeling: understand assumptions made 
when choosing a Bayes net graph



Conditional Independence and the Chain Rule

▪ In general a node is conditionally independent from all its non-descendents in the 
graph, given its parents. 

Missing edges from complete graph…                   Missing edges under any ordering of nodes 

𝑋1

𝑋3

𝑋2

⊨𝑋4 𝑋3|𝑋1, 𝑋2 𝑋4
⊨𝑋3 𝑋2|𝑋1

𝑋1

𝑋3

𝑋2

𝑋4

⊨𝑋3 𝑋4|𝑋1

⊨𝑋3 𝑋2|𝑋1



Example

▪ Conditional independence assumptions directly from simplifications in chain rule:

                                  𝑍 𝑋|𝑌              𝑊 𝑌|𝑍                𝑊 𝑋|𝑍

▪ Additional implied conditional independence assumptions?

X Y Z W

⊨⊨⊨
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Chain Probabilities
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Marginalize over Z:
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Chain Probabilities
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Note: We can’t marginalize over Z if Z 
is an evidence node, or if some other 
evidence node U depends on Z (since 
that changes the distribution of Z):

X Y Z W

X Y Z W

U



D-separation



D-separation: Overview

▪ D-separation: 

▪ a condition / algorithm for answering conditional independence 
queries from just studying the graph

▪ How:

▪ Study independence properties for triples

▪ Analyze complex cases as composition of triples



Triple Type 1: Causal Chains

▪ This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

▪ Guaranteed X independent of Z ?  No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Low pressure causes rain causes traffic,
    high pressure causes no rain causes no 
    traffic

▪ In numbers:
 
    P( +y | +x ) = 1, P( -y | - x ) = 1,
    P( +z | +y ) = 1, P( -z | -y ) = 1



Triple Type 1: Causal Chains

▪ This configuration is a “causal chain” ▪ Guaranteed X independent of Z given Y?

▪ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Triple Type 2: Common Cause

▪ This configuration is a “common cause” ▪ Guaranteed X independent of Z ?  No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Project due causes both forums busy 
     and lab full 

▪ In numbers:
 
         P( +x | +y ) = 1, P( -x | -y ) = 1,
      P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Triple Type 2: Common Cause

▪ This configuration is a “common cause” ▪ Guaranteed X and Z independent given Y?

▪ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full



Triple Type 3: Common Effect

▪ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

▪ Are X and Y independent?

▪ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

▪ Still need to prove they must be (try it!)

▪ Are X and Y independent given Z?

▪ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

▪ This is backwards from the other cases

▪ Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame



The General Case



The General Case

▪ General question: in a given BN, are two variables independent 
given some evidence?

▪ Last time we only considered evidence at
parents of a single node. 

▪ General Solution: analyze the graph

▪ Each path can be seen as repetitions 
of the three canonical cases



Reachability

▪ Recipe: shade evidence nodes, look for paths 
in the resulting graph

▪ Attempt 1: if two nodes are connected by an 
undirected path not blocked by a shaded 
node, they are conditionally independent 
given the evidence (shaded nodes).

▪ Almost works, but not quite
▪ Where does it break?

▪ Answer: the structure at T doesn’t count as a link 
in a path unless “active”

R

T

B

D

L



From Triples to Paths to D-Separation

▪ A path is active if each (overlapping) triple is active:

Note: e.g. for a path A – B – C – D – E, the triples are:

A – B – C, B – C – D, C – D – E 

Note: all it takes to block a path is a single inactive segment

▪ Are X and Y “D-separated” given evidence variables {Z}?
▪ Consider all (undirected) paths from X to Y
▪ If none of the paths are active, then X and Y are D-separated given {Z}
▪ On the other hand, if there is at least one active path, then X and Y are 

not D-separated given {Z}

▪ Independence and D-separation:
X and Y are guaranteed conditionally independent given {Z} 
IF AND ONLY IF
X and Y are d-separated given {Z}

→ just need to check the graph

Active Triples Inactive Triples



Recap of Triples

Active Triples Inactive Triples

Causal Chain:

Common Cause:

Common Effect (“v-structure”)



Example

Yes   Yes R

T

B

T’

Red = Nodes are conditionally independent given the evidence

Blue = Nodes are d-separated given the evidence

No   ??

No   ??



Example

R

T

B

D

L

T’

Yes   Yes

Yes   Yes

Yes   Yes

Red = Nodes are conditionally independent given the evidence

Blue = Nodes are d-separated given the evidence

No   ??

No   ??



Example

▪ Variables:

▪ R: Raining

▪ T: Traffic

▪ D: Roof drips

▪ S: I’m sad

▪ Questions:

T

S

D

R

No   ??

No   ??

Yes   Yes



Structure Implications

▪ Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

▪ This list determines the set of probability 
distributions that can be represented 



Computing All Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z



X

Y

Z

Topology Limits Distributions

▪ Given some graph G, only 
certain joint distributions 
can be encoded

▪ The graph structure 
guarantees certain 
(conditional) independences

▪ (There might be more 
independence)

▪ Adding arcs increases the 
set of distributions, but has 
several costs

▪ Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z



Bayes Nets Representation Summary

▪ Bayes nets compactly encode joint distributions

▪ Guaranteed independencies of distributions can be 
deduced from BN graph structure

▪ D-separation gives precise conditional independence 
guarantees from graph alone

▪ A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution



Bayes’ Nets

▪ Representation

▪ Conditional Independences

▪ Probabilistic Inference

▪ Enumeration (exact, exponential complexity)

▪ Variable elimination (exact, worst-case

  exponential complexity, often better)

▪ Probabilistic inference is NP-complete

▪ Sampling (approximate)

▪ Learning Bayes’ Nets from Data
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