CS 188: Artificial Intelligence

Bayes’ Nets: Independence

[Many of these slides were originally created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley.]



Announcements

= Midterm

» Wednesday March 19, 7-9pm

* Check Ed and Calendar for more midterm logistics/prep sessions, and see
exam logistics page near top of course web site for more info.

= HW6
= Due on Wednesday 3/12/25 at 11:59 PT

= Project 3
= Due on Friday 3/7/25 at 11:59 PT


https://inst.eecs.berkeley.edu/~cs188/sp25/exam/

Probability Recap

Conditional probability P(xzly) = Pz, y)
P(y)
Product rule P(x,y) = P(x|y)P(y)
Chain rule P(X1,X5,...Xn) = P(X1)P(Xo|X1)P(X3|X1,X5)...

X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:

Ve, y,z . P(x,ylz) = P(x|z)P(y|z)

X1Y|Z



Bayes’ Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:

= Modeling: what BN is most appropriate for a given domain?

= Representation: given a BN graph, what kinds of distributions can it encode?

* Inference: given a fixed BN, what is P(X | e)?



Bayes’ Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIec:cion of distributions over X, one for each combination of
parents values

P(Xla1...an)

= Bayes nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all
the relevant conditionals together:

mn
P(z1,x2,...zn) = || P(z|parents(X;))
=1

Recall, general case: P(X1,Xp,...Xp) P(X1)P(X2|X1)P(X3[X1,X2) ...

mn
- H P(Xilxla'”:Xi—l)
=1




Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999
A | J | PUIA) Q
+a | 4 0.9
+3 - 0.1
-a +j 0.05
-a - 0.95
| Y —
P(+b,—e,+a,—j,+m) =

E P(E)
+e | 0.002

-e | 0.998

A M P(M]|A)
+a | +m 0.7
+3a -m 0.3
-a +m 0.01
-a -m 0.99

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




Example: Alarm Network

B | P(B) E | P(E) w [l
+b | 0.001 +e | 0.002
b | 0.999 e | 0.998 -
A | 1 | PUIA) Q Al M |PMIA)
o | 4 | 09 T o5 B | E| A | PAIBE)
+a | - 0.1 +a | -m 03 +b | +e | +a 0.95
-a +j 005 -3 +m 001 +b +e -d 005
a | 4 | 095 a | -m | 099 il I I
+b | -e | -a 0.06
. -b | +e | +a 0.29
| | _ S
P( ! b7 €, Ta, —7, _I_m) _ -b | +e | -a 0.71
P(4+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m|+a)=|b ||+ | 0001
-b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Size of a Bayes Net

How big is a joint distribution over N = Both give you the power to calculate
Boolean variables?

5\ P(X1,Xo,...Xn)

= BNs: Huge space savings!

How big is an N-node net if nodes

have up to k parents? = Also easier to elicit local CPTs

O(N * 2k+1) = Also faster to answer queries (coming)




Bayes’ Nets

JRepresentation
= Conditional Independences
" Probabilistic Inference

" Learning Bayes’ Nets from Data



Conditional Independence

X and Y are independent if

Ve,y P(z,y) = P(z)P(y) - ---> X1Y

X and Y are conditionally independent given Z

Vz,y,z P(z,ylz) = P(z|z)P(y|z) —--=> X L1Y|Z

(Conditional) independence is a property of a distribution

Example:

Alarm 1L Fire|Smoke




Bayes Nets: Assumptions

Assumptions we make with Bayes net graph:

P(xz;|zy---xi_1) = P(x;|parents(X;))

Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= Many can also be determined from just the graph

Important for modeling: understand assumptions made
when choosing a Bayes net graph




Conditional Independence and the Chain Rule

" |n general a node is conditionally independent from all its non-descendents in the
graph, given its parents.

Missing edges from complete graph... Missing edges under any ordering of nodes



Example

OnOnOR0

= Conditional independence assumptions directly from simplifications in chain rule:

Z U X|Y WLY|Z Wi X|Z

= Additional implied conditional independence assumptions?



Example

OO~

= Conditional independence assumptions directly from simplifications in chain rule:

Z U X|Y WLY|Z Wi X|Z

= Additional implied conditional independence assumptions?

Wl X|Y



Chain Probabilities
?GQ.P(Y X)P(Z,Y)P(W,Z)
A\ P(Y) P(Z)
P(Y,X)P(Z,Y) P(W,Z) PR
P(Y) P(Z) R 1
P(Y X)PRQ P(Z,Y)P(W,Z)
— - 1 P(Y) PZ)




Chain Probabilities

@ @ @ @ .P.SQ.P(Y R PO
— — —
P(Y) P(Z)

. PEQPY,X)P(Y,W,Z) P(W)
1 PoS- PY, W) 1

Marginalize over Z:

OO0 O s
1 PO 1




Chain Probabilities

OnOnOR0

@*@C;@—@

P(Y,X)P(Z,Y)P(W,2)
1 P(Y) P2

P(Y,X)P(Y,W,Z) P(W)
1 PY,w) 1

Note: We can’t marginalize over Z if Z
is an evidence node, or if some other
evidence node U depends on Z (since
that changes the distribution of Z):



D-separation




D-separation: Overview

= D-separation:

= 3 condition / algorithm for answering conditional independence
gueries from just studying the graph

= How:

= Study independence properties for triples
" Analyze complex cases as composition of triples



Triple Type 1: Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!
"= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.
= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no

traffic
X: Low pressure Y: Rain Z: Traffic
= |n numbers:
P(x,y,z) = P(x)P(y|z)P(z|y) P(+y | +x)=1,P(-y | -x)=1,

P(+z | +y)

1IP(-Z|_y)=1



Triple Type 1: Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

) () G e

(7 AR . _ P(@)P(ylz)P(z]y)
SURRT e 8 =R

X: Low pressure Y: Rain Z: Traffic — P(Z|y)

Yes!

P(z,y,2) = P(2)P(ylz)P(z[y) * Evidence along the chain “blocks” the

influence



Triple Type 2: Common Cause

. . . . 13 7
* This configuration isa “common cause

Y: Project Praject
Due!
due

5
X: Forums @ @

busy o= @? Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

= Guaranteed X independentofZ? No!

"= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= |n numbers:

P(+x | +y)=1,P(x|-y)=1,
P(+z | +y)=1,P(-z]|-y)=1



Triple Type 2: Common Cause

. . . . 13 7
* This configuration isa “common cause

Y: Project Praject
Due!
due

(&

X: Forums [=ee -
busy o= _? Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

= Guaranteed X and Z independent given Y?

P(x,y,z)
P(z,y)

_ P)P(xly) P(z|y)
P(y)P(z|y)

P(z|lz,y) =

= P(z|y)
Yes!

= Observing the cause blocks influence
between effects.



Triple Type 3: Common Effect

= |ast configuration: two causes of one ® Are Xand Y independent?

effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are Xand Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

s

= This is backwards from the other cases

= Observing an effect activates influence between

Z: Traffic ,
possible causes.

EX



The General Case




The General Case

General question: in a given BN, are two variables independent
given some evidence?

Last time we only considered evidence at
parents of a single node.

General Solution: analyze the graph

Each path can be seen as repetitions
of the three canonical cases



Reachability

= Recipe: shade evidence nodes, look for paths @
in the resulting graph

= Attempt 1: if two nodes are connected by an e G

undirected path not blocked by a shaded
node, they are conditionally independent
given the evidence (shaded nodes).

= Almost works, but not quite

= \Where does it break?

= Answer: the structure at T doesn’t count as a link
in a path unless “active”




From Triples to Paths to D-Separation

= A path is active if each (overlapping) triple is active: Active Triples Inactive Triples

Note: e.g. for a path A—B—-C—D —E, the triples are:
A-B-C,B-C-D,C-D-E

Note: all it takes to block a path is a single inactive segment

= Are XandY “D-separated” given evidence variables {Z}?
= Consider all (undirected) paths from XtoY

= |f none of the paths are active, then X and Y are D-separated given {Z}

= Onthe other hand, if there is at least one active path, then Xand Y are
not D-separated given {Z}

000
00
o

" |ndependence and D-separation:

X and Y are guaranteed conditionally independent given {Z}
IF AND ONLY IF

X and Y are d-separated given {Z}

~d{ §

- just need to check the graph



Recap of Triples

Active Triples Inactive Triples

Causal Chalin:

Common Cause:

Common Effect (“v-structure”)

000
Slle
S

~d{ §



Example

Red = Nodes are conditionally independent given the evidence
Blue = Nodes are d-separated given the evidence

R B Yes Yes e 9

RIUB|IT  No ??
RIBIT'  No ?? (1)



Example

Red = Nodes are conditionally independent given the evidence
Blue = Nodes are d-separated given the evidence G

® @
L1 B|T No ??
L1 B|T' No ?? @ “

LI B|T,R Yes Yes

L1LT"\T Yes Yes

LI B Yes Yes




Example

" Variables:
= R: Raining
" T: Traffic
= D: Roof drips
= S: I'm sad

= Questions:
T 1 D No ??

T DR Yes Yes
T1 D|R,S No ??




Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X 1L X X,y ooy Xk, }

= This list determines the set of probability
distributions that can be represented




Computing All Independences

CoMPUTE ALL THE &

| NDEPENDENCES/



Topology Limits Distributions

(XULY,X 1 ZY 1 Z,

(X 1L Z|Y)
XULZ|V,XLY|ZY1Z|X}

Given some graph G, only
certain joint distributions
can be encoded @

® @

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has {}
several costs

Full conditioning can encode
any distribution

5P &P
5P &P
PP PP



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

" Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= ABayes net sjointdistribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution



Bayes’ Nets

JRepresentation
JConditionaI Independences

" Probabilistic Inference
=" Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
" Probabilistic inference is NP-complete
= Sampling (approximate)

" Learning Bayes’ Nets from Data
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