
CS 188: Artificial Intelligence

Bayes’ Nets: Inference

[Many of these slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.]



Announcements

▪ Midterm
▪ Wednesday March 19, 7-9pm. You will receive an individual email with the 

location of your exam, probably by Friday. There will be an announcement on 
Ed when the emails go out. Material up to last week (independence)

▪ Check Ed and Calendar for more midterm logistics/prep sessions, and see 
exam logistics page near top of course web site for more info. 

▪ HW6 + HW5 self-assessment
▪ Due on Wednesday 3/12/25 at 11:59 PT

▪ HW6 self-assessment
▪ Due on Friday 3/21/25 at 11:59 PT

https://inst.eecs.berkeley.edu/~cs188/sp25/exam/


Bayes’ Net Representation

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination 
of parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

[Demo: BN Applet]
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Bayes’ Nets

▪ Representation

▪ Conditional Independences

▪ Probabilistic Inference

▪ Enumeration (exact, exponential 
complexity)

▪ Variable elimination (exact, worst-case 
exponential complexity, often better)

▪ Inference is NP-complete

▪ Sampling (approximate)

▪ Learning Bayes’ Nets from Data



▪ Examples:

▪ Posterior probability

▪ Most likely explanation:

Inference

▪ Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration

▪ General case:
▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration in Bayes’ Net

▪ Given unlimited time, inference in BNs is easy

▪ Reminder of inference by enumeration by example:
B E

A

MJ



Inference by Enumeration?



Inference by Enumeration vs. Variable Elimination

▪ Why is inference by enumeration so slow?
▪ You join up the whole joint distribution before 

you sum out the hidden variables

▪ Idea: interleave joining and marginalizing!
▪ Called “Variable Elimination”

▪ Still NP-hard, but usually much faster than 
inference by enumeration

▪ First we’ll need some new notation: factors



Example: Traffic Domain

▪ Random Variables

▪ R: Raining

▪ T: Traffic

▪ L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Inference by Enumeration: Procedural Outline

▪ Track objects called factors

▪ Initial factors are local CPTs (one per node)

▪ Any known values are selected

▪ E.g. if we know                  , the initial factors are

▪ Procedure: Join all factors, eliminate all hidden variables, normalize

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

▪ First basic operation: joining factors

▪ Combining factors:

▪ Just like a database join

▪ Get all factors over the joining variable

▪ Build a new factor over the union of the variables 
involved

▪ Example: Join on R

▪ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

T

R

R,T



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

Join T



Operation 2: Eliminate

▪ Second basic operation: marginalization

▪ Take a factor and sum out a variable

▪ Shrinks a factor to a smaller one

▪ A projection operation

▪ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134
-l 0.886



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Marginalizing Early (= Variable Elimination)



Traffic Domain

▪ Inference by EnumerationT

L

R

▪ Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t



Marginalizing Early! (aka VE)

Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Evidence

▪ If evidence, start with factors that select that evidence
▪ With no evidence, these are the initial factors:

▪ For computing.                          , the initial factors become:

▪ We eliminate all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Evidence II

▪ Result will be a selected joint of query and evidence
▪ E.g. for P(L | +r), we would end up with:

▪ To get our answer, just normalize this!

▪ That’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



General Variable Elimination

▪ Query:

▪ Start with initial factors:
▪ Local CPTs (but instantiated by evidence)

▪ While there are still hidden variables 
(not Q or evidence):
▪ Pick a hidden variable Hi

▪ Join all factors mentioning Hi

▪ Eliminate (sum out) Hi

▪ Join all remaining factors and normalize



Factor Zoo



Factor Zoo I

▪ Joint distribution: P(X,Y)
▪ Entries P(x,y) for all x, y

▪ Sums to 1

▪ Selected joint: P(x,Y)
▪ A slice of the joint distribution

▪ Entries P(x,y) for fixed x, all y

▪ Sums to P(x)

▪ Number of capitals = 
dimensionality of the table

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3



Factor Zoo II

▪ Single conditional: P(Y | x)

▪ Entries P(y | x) for fixed x, all y

▪ Sums to 1

▪ Family of conditionals: 

 P(Y | X)

▪ Multiple conditionals

▪ Entries P(y | x) for all x, y

▪ Sums to |X|

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6



Factor Zoo III

▪ Specified family: P( y | X )
▪ Entries P(y | x) for fixed y,

 but for all x

▪ Sums to … who knows!

T W P

hot rain 0.2

cold rain 0.6



Factor Zoo Summary

▪ In general, when we write P(Y1 … YN | X1 … XM)

▪ It is a “factor,” a multi-dimensional array

▪ Its values are P(y1 … yN | x1 … xM)

▪ Any assigned (=lower-case) X or Y is a dimension selected from the array



Example

Choose A



Example

Choose E

Finish with B

Normalize



Same Example in Equations

marginal obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Another Variable Elimination Example

Computational complexity critically 
depends on the largest factor being 
generated in this process.  Size of factor 
= number of entries in table.  In 
example above (assuming binary) all 
factors generated are of size 2 --- as 
they all only have one variable (Z, Z, 
and X3 respectively). 



Variable Elimination Ordering

▪ For the query P(Xn|y1,…,yn) work through the following two different orderings 
as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the 
maximum factor generated for each of the orderings?

▪ Answer: 2n+1 versus 22 (assuming binary)

▪ In general: the ordering can greatly affect efficiency.  

…

…



VE: Computational and Space Complexity

▪ The computational and space complexity of variable elimination is 
determined by the largest factor

▪ The elimination ordering can greatly affect the size of the largest factor.  
▪ E.g., previous slide’s example 2n vs. 2

▪ Does there always exist an ordering that only results in small factors?
▪ No!



Worst Case Complexity?

▪ CSP:  

▪ If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

▪ Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general.

…

…



Polytrees

▪ A polytree is a directed graph with no undirected cycles

▪ For poly-trees you can always find an ordering that is efficient 
▪ Try it!!

▪ Cut-set conditioning for Bayes’ net inference

▪ Choose set of variables such that if removed only a polytree remains

▪ Exercise: Think about how the specifics would work out!



Bayes’ Nets

▪ Representation

▪ Conditional Independences

▪ Probabilistic Inference

▪ Enumeration (exact, exponential 
complexity)

▪ Variable elimination (exact, worst-case 
exponential complexity, often better)

▪ Inference is NP-complete

▪ Sampling (approximate)

▪ Learning Bayes’ Nets from Data
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