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Today’s Topics

▪ Recap of Hidden Markov Models (HMMs) and exact inference

▪ Approximate Inference in HMMs via Particle Filtering

▪ Applications in Robot Localization and Mapping

▪ Brief overview of Dynamic Bayes Nets 



Recap: Reasoning Over Time

▪ Markov models

▪ Hidden Markov models

X2X1 X3 X4

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

[Demo: Ghostbusters Markov Model (L15D1)]

Xt-1 Xt P

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7𝑃(𝑋𝑡|𝑋𝑡−1)

𝑃(𝑋𝑡|𝑋𝑡−1)



HMM Inference: Find State Given Evidence

▪ We are given evidence at each time and want to know

▪ Idea: start with 𝑃(𝑋1) and derive 𝐵𝑡(𝑋) in terms of 𝐵𝑡−1(𝑋)
▪ Two steps: Passage of Time & Observation

X4X2

E1

X1 X3

E2 E3 E4

𝐵3(𝑋)

𝐵′
4 𝑋 = 𝑃(𝑋4|𝑒1:3)

𝐵4 𝑋 = 𝑃(𝑋4|𝑒1:4)

𝐵𝑡 𝑋 = 𝑃(𝑋𝑡|𝑒1:𝑡)



Passage of Time

▪ Assume we have current belief P(X | evidence to date) and transition prob.

▪ Then, after one time step passes:

▪ Or compactly:

X2

E1

X1 X3 X4

E2 E3

Ex: 𝐵(𝑋3) ?



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 4

(Transition model: ghosts usually go counter-clockwise)



Observation

▪ Assume we have current belief P(X | previous evidence) and evidence model:

▪ Then, after evidence comes in:

▪ Or, compactly:
▪ Basic idea: beliefs “reweighted” 

by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize

X2

E1

X1 X3 X4

E2 E3 E4

Ex:

?



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Video of Ghostbusters HMM Inference



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = ?
B’(-r)  = ?

Passage of Time:

Observation:

𝑃(𝑋𝑡+1|𝑋𝑡) 𝑃(𝐸𝑡|𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5*0.7 + 0.5*0.3 = 0.5
B’(-r)  = 0.5*0.3 + 0.5*0.7 = 0.5

Passage of Time:

Observation:

𝑃(𝑋𝑡+1|𝑋𝑡) 𝑃(𝐸𝑡|𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = ?
B(-r)  = ?

Passage of Time:

Observation:

𝑃(𝑋𝑡+1|𝑋𝑡) 𝑃(𝐸𝑡|𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.9*0.5 = 0.45
B(-r)  = 0.2*0.5 = 0.10

Passage of Time:

Observation:

0.818
0.182

normalize

𝑃(𝑋𝑡+1|𝑋𝑡) 𝑃(𝐸𝑡|𝑋𝑡)



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117

Passage of Time:

Observation:

𝑃(𝑋𝑡+1|𝑋𝑡) 𝑃(𝐸𝑡|𝑋𝑡)



Online Belief Updates

▪ Every time step, we start with current P(X | evidence)

▪ We update for time:

▪ We update for evidence:

▪ This is our updated belief

▪ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2



The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…

[Demo: Ghostbusters Exact Filtering (L15D2)]

t



How can we support large state spaces?



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ Example: if we want to infer location on 16x16 grid

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Store 256 numbers: Store 10 numbers:

VS

1 2 3

3

2

1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

1 2 3

3

2

1



1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1



1 2 3
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1

X’ P(X’|X=(3,3))

(3,2) 0.8

(3,3) 0.1

(2,3) 0.1

sample(                                   )

most likely returns (3,2) but may return (3,3) or (2,3)

For example:
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
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    (3,2)
    (3,3)
    (3,2)
    (1,2)
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    (3,3)
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    (2,3)
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Particle Filtering: Passage of Time
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Particles:
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    (2,3)
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and 

after (consistent)

Particles:
    (3,3)
    (2,3)

    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)

    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

1 2 3

3

2

1



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight 
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been down-weighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)

    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)

    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the 
distribution

▪ Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

1 2 3

3

2

1

1 2 3

3

2

1



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

1 2 3

3

2

1



Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



More Demos!



Robot Localization

▪ In robot localization:
▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping

▪ We do not know the map or our location

▪ State consists of position AND map!

▪ Main techniques: Kalman filtering (Gaussian HMMs) 
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using 
multiple sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman – Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman Sonar Ghost DBN Model



Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) 
is computed

▪ Online belief updates: Eliminate all variables from the previous time step; store factors 
for current time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b



DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3) 

▪ Elapse time: Sample a successor for each particle 

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on 
the sample

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood



Conclusion

▪ We’re done with Part III: Uncertainty!

▪ We’ve seen methods for:

▪ Representing uncertainty structure via Bayes Nets and multiple 
ways of doing inference

▪ Incorporating decision-making with uncertainty via Decision Nets

▪ Exploiting special structure of sequences / time via Markov Models 
and Hidden Markov Models and exact and approximate inference 
(Particle Filtering)

▪ Next up: Part IV: Machine Learning!
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