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Today’s Topics

Recap of Hidden Markov Models (HMMs) and exact inference
Approximate Inference in HMMes via Particle Filtering
Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets



[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time
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HMM Inference: Find State Given Evidence

= \We are given evidence at each time and want to know

B:(X) = P(X¢|eq.t)

* |dea: start with P(X,) and derive B;(X) in terms of B;_;(X)

= Two steps: Passage of Time & Observation
B'4(X) = P(X4ley:3)
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Passage of Time

= Assume we have current belief P(X | evidence to date) and transition prob.

B(X:) = P(X¢le1:t) P(Xiy1|xe)

Ex:
" Then, after one time step passes: é é

P(Xt-|—1‘€1:t) — ZP(Xt+17$t|€1:t)

i

— ZP(XtH\a:t, e1.t)P(xlers) = Or compactly:
B'(Xi11) =Y P(Xepa1|ze) B(xy)

B(X3) ?

On0.

— ZP(Xt+1|CCt)P(xt|61:t)



Example: Passage of Time

= Astime passes, uncertainty “accumulates’

<0.01 <0.01<0.01 <0.01/|<0.01
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(Transition model: ghosts usually go counter-clockwise)
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Observation

= Assume we have current belief P(X | previous evidence) and evidence model:
2

B'(Xt41) = P(Xiqalere)  Plera|Xoy) Ex: @_’@_’@

= Then, after evidence comes in:

P(Xt+1‘€1:t+1) — P(Xt+1,€t+1‘€1:t)/P(€t+1|€1:t)
XX P(Xt+1a€t+1‘€1:t)

— P(et—I—l 61;t,Xt_|_1>P(Xt—|—1‘€1:t)
= P(et+1 Xt—|-1)P(Xt—I—1|61:t)

= Basicidea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence

B(Xi41) <x,yy Pleir| Xip1) B (Xeg1) = Unlike passage of time, we have
to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

u
n n

Before observation After observation

B(X) «x P(e|X)B'(X)




Video of Ghostbusters HMM Inference




Example: Weather HMM [ ( [(

Passage of Time:
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Example: Weather HMM [ ( [(

Passage of Time:

B'(Xi41) =Y P(Xiy1lze) B(ay)

Tt
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Example: Weather HMM [ ( [(

Passage of Time:

B'(Xi41) =Y P(Xiy1lze) B(ay)

B’(+r) = 0.5
B’(-r) =0.5 Tt
l Observation:
B(X X Ple;o 1| X B'(X
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B(+r) =0.5
B(-r) =0.5

Example: Weather HMM

B’(+r) = 0.5
B’(-r) =0.5

l normalize

B(-r) = 0.2%0.5 = 0.10 0.182

Rain, Rain,

Umbrella, Umbrella,

o 77

Passage of Time:

B'(Xi41) =Y P(Xiy1lze) B(ay)

Observation:
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Example: Weather HMM [ ( [(

Passage of Time:

B'(Xi41) =Y P(Xiy1lze) B(ay)

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373 Tt
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o i Rain; P(Xe41|X0) P(EclX:)

Rt | Ru1 | P(RualRy) R | Ut | P(URY

+r +r 0.7 +r +U 0.9
Umbrella, Umbrella, +r -r 0.3 +r | -u 0.1
-r +r 0.3 -r +U 0.2
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Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

P(xtler:4—1) = Z P(xi_1ler:1—1) - P(xt|ri—1) @_’@

Lt—1

We update for evidence: @

P(x¢ler) oxx P(xiler+—1) - P(et|xt)

This is our updated belief Bi(X) = P(X¢|e1:t)
The forward algorithm does both at once (and doesn’t normalize)



The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:)

= We can derive the following updates
We can normalize as we go if we

want to have P(x|e) at each time

P($t|€11t) O(XtP(ZCt,G]_;t)  ‘ step, or just once at the end...

= Y P(x4_1,74,e1:4)

Ti—1

= Y P(zy_1,e1:4-1)P(xt|zi—1) P(et|xt)
Ty 1

= P(et|z) Y P(otlep—1)P(xp—1,€1:4-1)

Ti—1

[Demo: Ghostbusters Exact Filtering (L15D2)]



How can we support large state spaces?



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X| is too big to use exact inference
= | X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

0.0 0.1 0.0
0.0 0.0 0.2
0.0 0.2 0.5
@
@0
o0 ...




Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)

= Generally, N << | X]|

= Storing map from X to counts would defeat the point

= Example: if we want to infer location on 16x16 grid

Store 256 numbers:

VS

Store 10 numbers:

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << | X]|
= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

2 3
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o |0
e
O

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Passage of Time

= Each particle is moved by sampling its next particles.
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Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

For example:

sample(

most likely returns (3,2) but may return (3,3) or (2,3)

Particle Filtering: Passage of Time

4

X' | P(X'|X=(3,3))
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Particle Filtering: Passage of Time

= Each particle is moved by sampling its next particles. o2 3
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Particle Filtering: Passage of Time
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Particle Filtering: Passage of Time
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Particle Filtering: Passage of Time
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Particle Filtering: Passage of Time
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Particle Filtering: Passage of Time

= Each particle is moved by sampling its next particles. o2 3
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Particle Filtering: Passage of Time
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Particle Filtering: Passage of Time

= Each particle is moved by sampling its next

Particles:

w
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Particle Filtering: Passage of Time

= Each particle is moved by sampling its next particles.
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v’ = sample(P(X'|z))
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Particle Filtering: Passage of Time

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)
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Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) «x P(e|X)B/'(X)
As before, the probabilities don’t sum to one,

since all have been down-weighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:
(3 2
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Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

» This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
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Recap: Particle Filtering

" Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
1 3
3 @ ... — e ® ® . o
® @0 ~Q | © . — | -
@ @ ©_0
2
@ ® @ ® ® ...
1 o o °
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w= 2 (2,3)
(3,3) (3,2) (3,2) w (3,2)
(2,3) (2,2) (2,2) w= 4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Video of Demo — Moderate Number of Particles




Video of Demo — One Particle




Video of Demo — Huge Number of Particles




More Demos!
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Robot Localization

= |nrobot localization:
= We know the map, but not the robot’s position

= Observations may be vectors of range finder readings DIRECTORY

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Sonar)
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[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)
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[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

" |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3

= Dynamic Bayes nets are a generalization of HMMs
[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman — Sonar

.
74 CS188 Pacman

14.0

21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman Sonar Ghost DBN Model




Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e;.7)

is computed
t=1 t=2 t=3

_—] _—
e B e Q

= Online belief updates: Eliminate all variables from the previous time step; store factors
for current time only




DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G;=(3,3) G,"=(5,3)

Elapse time: Sample a successor for each particle
= Example successor: G,*=(2,3) G,*=(6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E,® |G,®) * P(E,* | G,)

Resample: Select prior samples (tuples of values) in proportion to their likelihood



Conclusion

= We're done with Part lll: Uncertainty!

= \We’ve seen methods for:

= Representing uncertainty structure via Bayes Nets and multiple
ways of doing inference

" Incorporating decision-making with uncertainty via Decision Nets

= Exploiting special structure of sequences / time via Markov Models
and Hidden Markov Models and exact and approximate inference
(Particle Filtering)

= Next up: Part IV: Machine Learning!
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