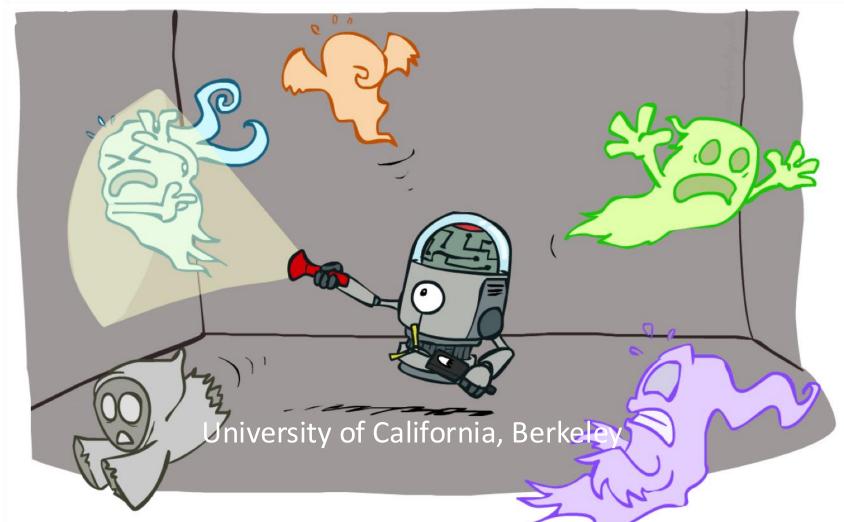
CS 188: Artificial Intelligence Filtering and Applications



[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today's Topics

Recap of Hidden Markov Models (HMMs) and exact inference

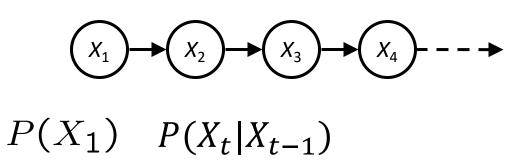
Approximate Inference in HMMs via Particle Filtering

Applications in Robot Localization and Mapping

Brief overview of Dynamic Bayes Nets

Recap: Reasoning Over Time

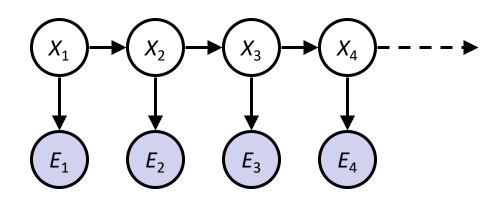
Markov models



$P(X_t|X_{t-1})$

X _{t-1}	X_{t}	Р
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov models



P(E|X)

X	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

HMM Inference: Find State Given Evidence

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

- Idea: start with $P(X_1)$ and derive $B_t(X)$ in terms of $B_{t-1}(X)$
 - Two steps: Passage of Time & Observation

$$B'_{4}(X) = P(X_{4}|e_{1:3})$$

$$X_{1} \longrightarrow X_{2} \longrightarrow X_{3} \longrightarrow X_{4} \longrightarrow X_{4}$$

$$E_{1} \longrightarrow E_{2} \longrightarrow E_{3} \longrightarrow E_{4}$$

$$B_{3}(X) \longrightarrow B_{4}(X) = P(X_{4}|e_{1:4})$$

Passage of Time

Assume we have current belief P(X | evidence to date) and transition prob.

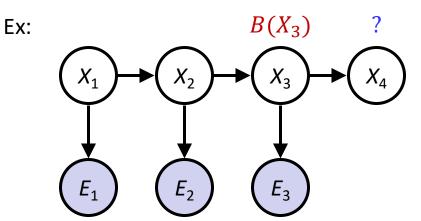
$$B(X_t) = P(X_t|e_{1:t})$$
 $P(X_{t+1}|x_t)$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$



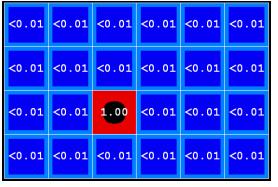
Or compactly:

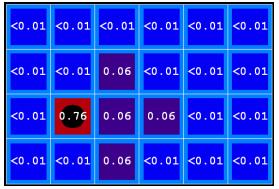
$$B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t)B(x_t)$$

Example: Passage of Time

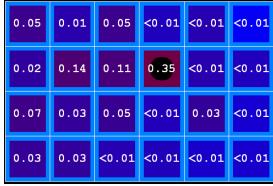
As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go counter-clockwise)

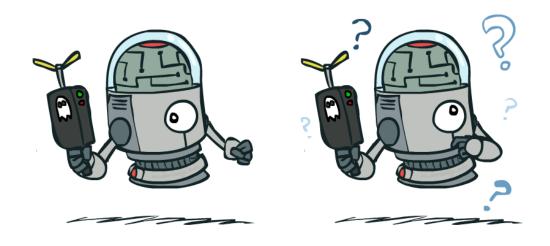




$$T = 2$$



$$T = 4$$



Observation

Assume we have current belief P(X | previous evidence) and evidence model:

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t}) \qquad P(e_{t+1}|X_{t+1}).$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

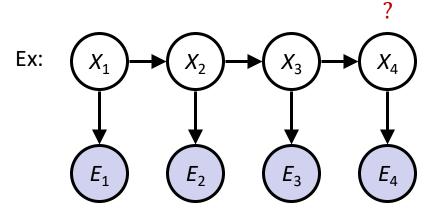
$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

Or, compactly:

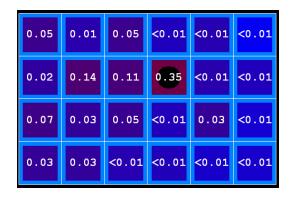
$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$



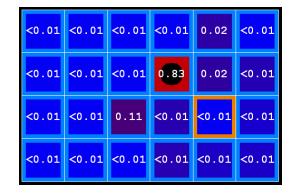
- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"



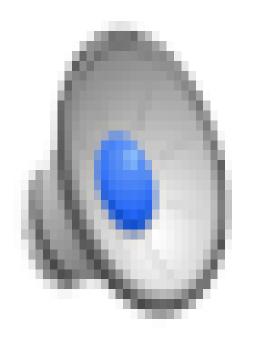
Before observation

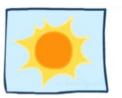


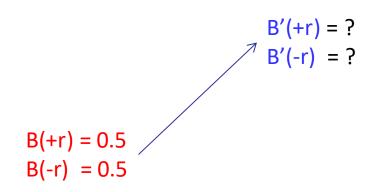
After observation

 $B(X) \propto P(e|X)B'(X)$

Video of Ghostbusters HMM Inference



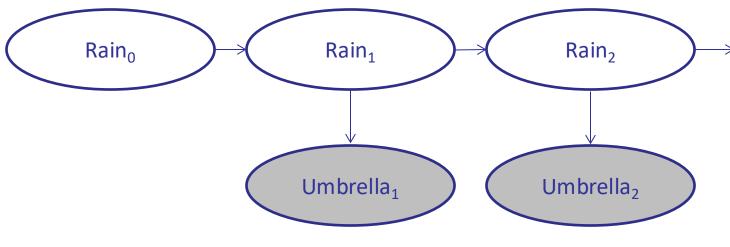




Passage of Time:

$$B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t)B(x_t)$$

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

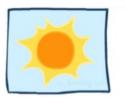


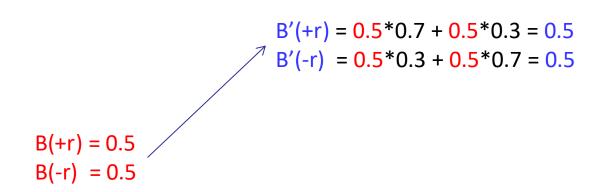
$P(X_{t+})$	$_{1} X_{t}\rangle$)
\ U I	- 1 0 /	•

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

 $P(E_t|X_t)$

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

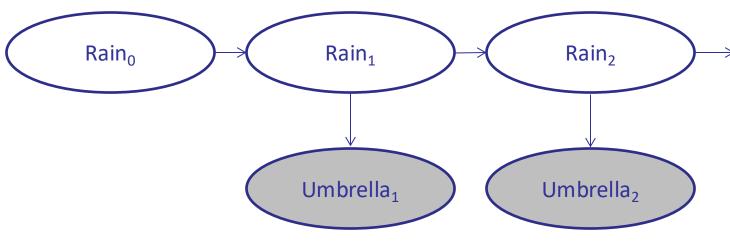




Passage of Time:

$$B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t)B(x_t)$$

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

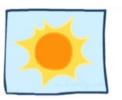


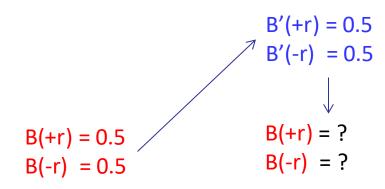
P(X_{t+1}	$ X_t $
•	U 1 -	

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

 $P(E_t|X_t)$

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

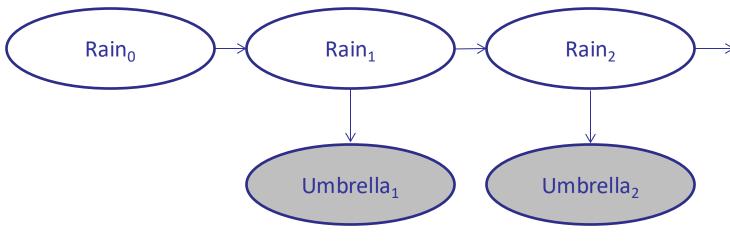




Passage of Time:

$$B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t)B(x_t)$$

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

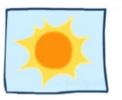


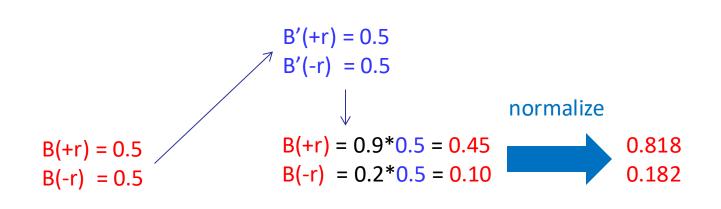
\boldsymbol{D}	$(X_{t+1} $	$ V\rangle$
1	$(\Lambda t+1)$	$ \Lambda t\rangle$

R _t	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

 $P(E_t|X_t)$

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

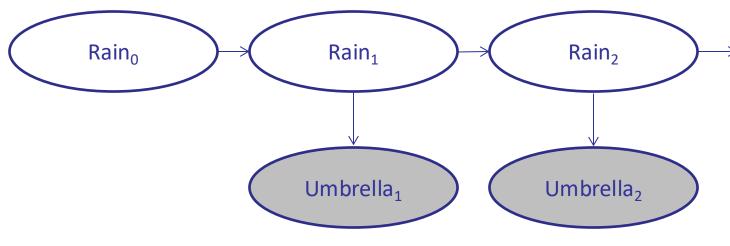




Passage of Time:

$$B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t)B(x_t)$$

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

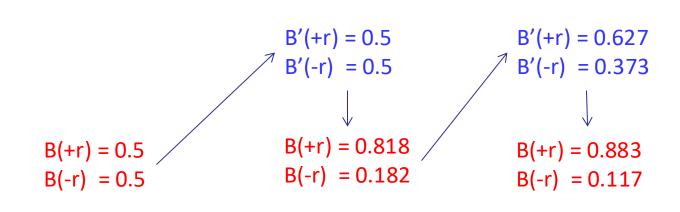


$P(X_{t+1})$	$ X_t $
\ U I I	

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

 $P(E_t|X_t)$

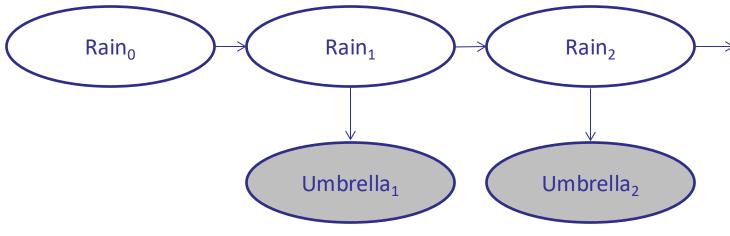
R_{t}	\mathbf{U}_{t}	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8



Passage of Time:

$$B'(X_{t+1}) = \sum_{x_t} P(X_{t+1}|x_t)B(x_t)$$

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$



$P(X_{t+1})$	$ X_t $
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

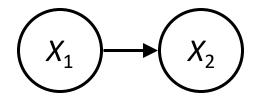
 $P(E_t|X_t)$

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

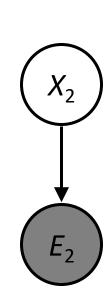
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$



We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

- This is our updated belief $B_t(X) = P(X_t|e_{1:t})$
- The forward algorithm does both at once (and doesn't normalize)



The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X_{t}} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

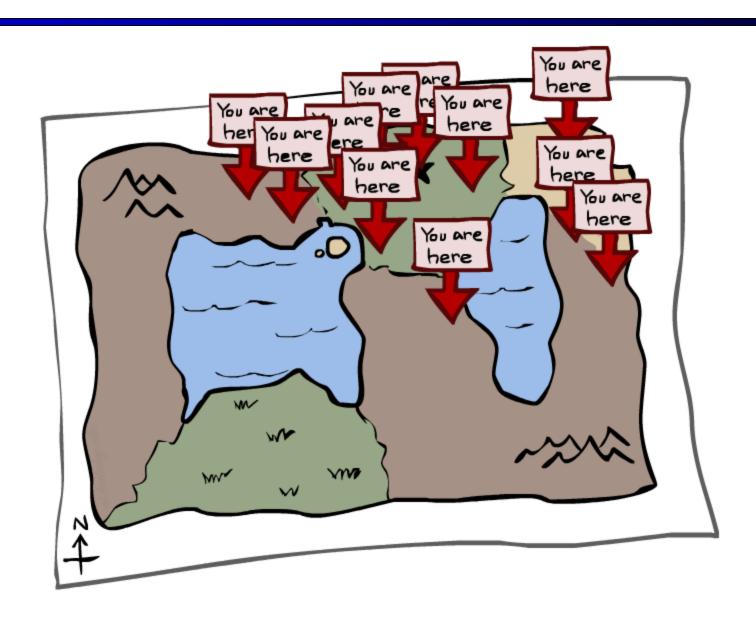
$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

How can we support large state spaces?

Particle Filtering



Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

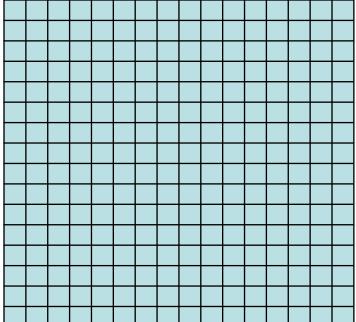
0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

	•

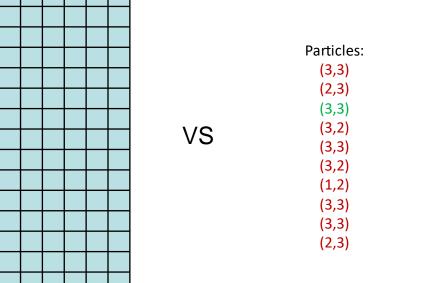
Representation: Particles

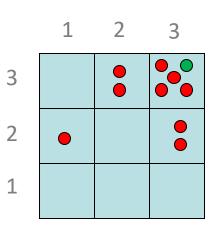
- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
 - Example: if we want to infer location on 16x16 grid

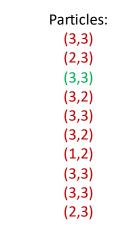
Store 256 numbers:



Store 10 numbers:

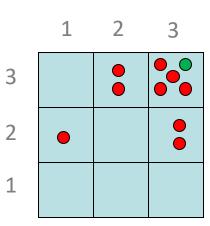






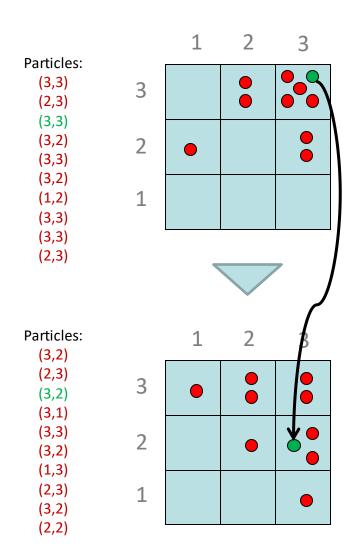
Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1



Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

$$x' = \text{sample}(P(X'|x))$$



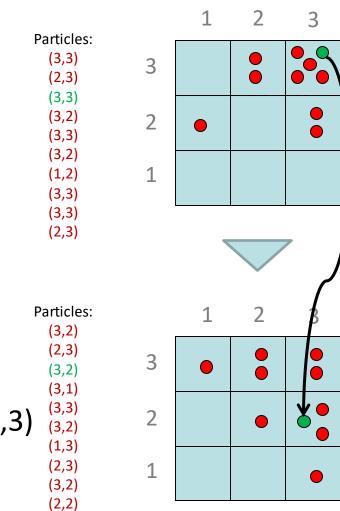
 Each particle is moved by sampling its next position from the transition model

$$x' = \operatorname{sample}(P(X'|x))$$

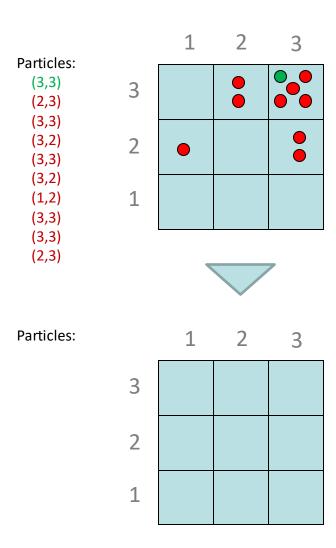
For example:

	X'	P(X' X=(3,3))	
sample((3,2)	0.8	۱
Jampie	(3,3)	0.1	'
	(2,3)	0.1	

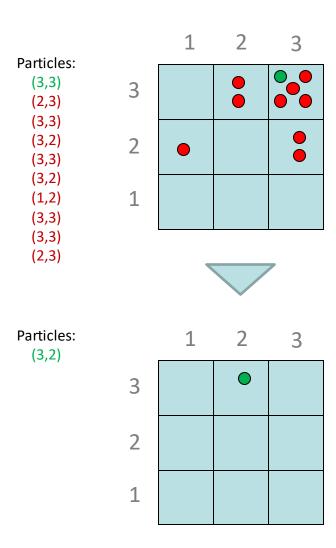
most likely returns (3,2) but may return (3,3) or (2,3) $^{(3)}_{(3)}$



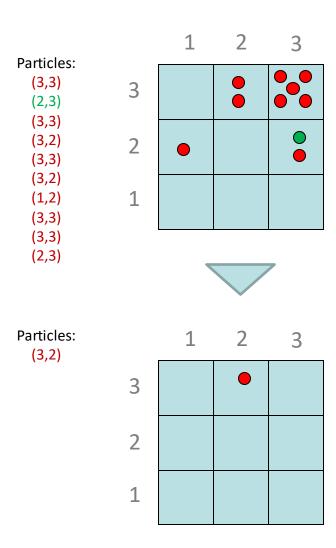
$$x' = \text{sample}(P(X'|x))$$



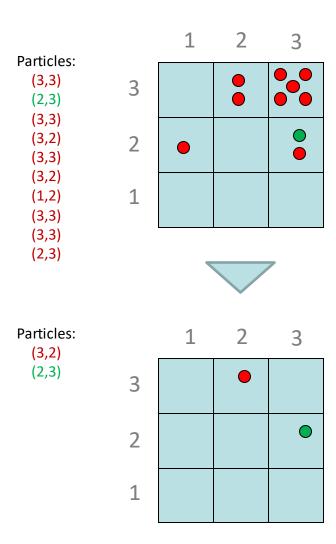
$$x' = \text{sample}(P(X'|x))$$



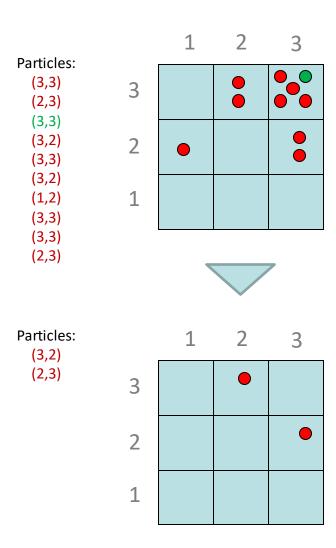
$$x' = \text{sample}(P(X'|x))$$



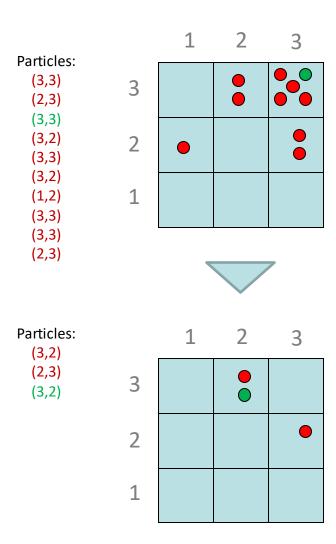
$$x' = \text{sample}(P(X'|x))$$



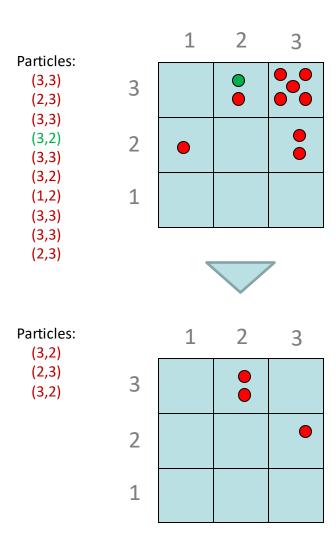
$$x' = \text{sample}(P(X'|x))$$



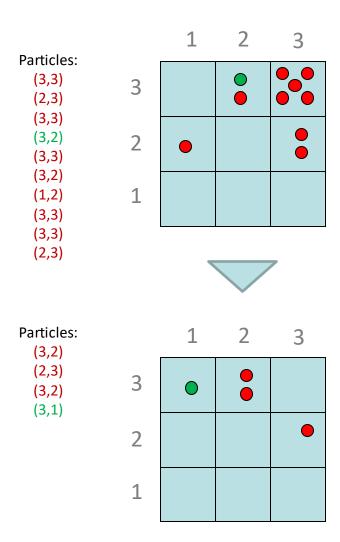
$$x' = \text{sample}(P(X'|x))$$



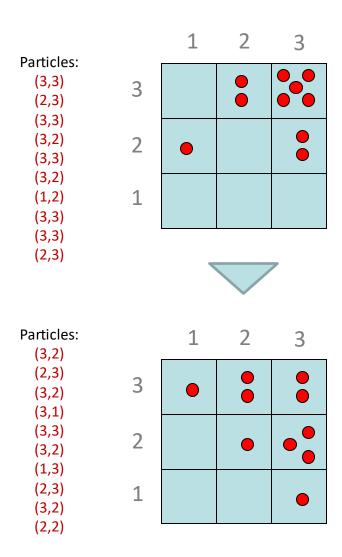
$$x' = \text{sample}(P(X'|x))$$



$$x' = \text{sample}(P(X'|x))$$

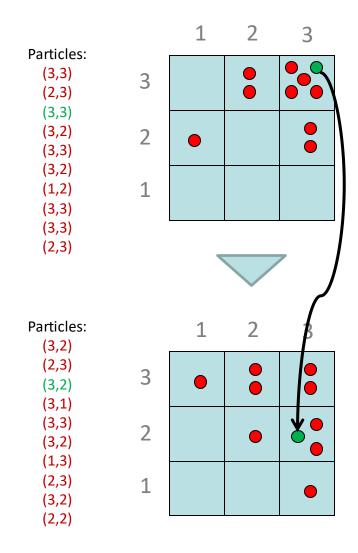


$$x' = \text{sample}(P(X'|x))$$



$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



Particle Filtering: Observe

Slightly trickier:

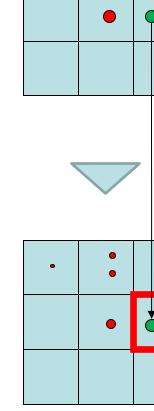
- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been down-weighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2) (2,2)



Particles:

(3,2)	w=.9
-------	------

$$(2,3)$$
 w=.2

$$(3,2)$$
 w=.9

$$(3,1)$$
 w=.4

$$(1,3)$$
 w=.1

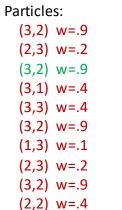
$$(2,3)$$
 w=.2

$$(3,2)$$
 w=.9

$$(2,2)$$
 w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

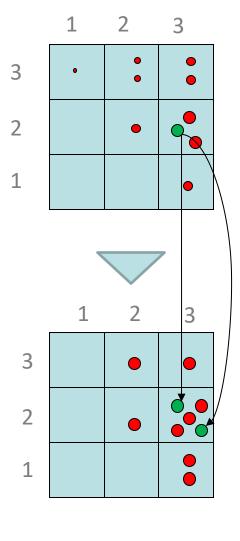


(New) Particles:

(3,2) (2,2)

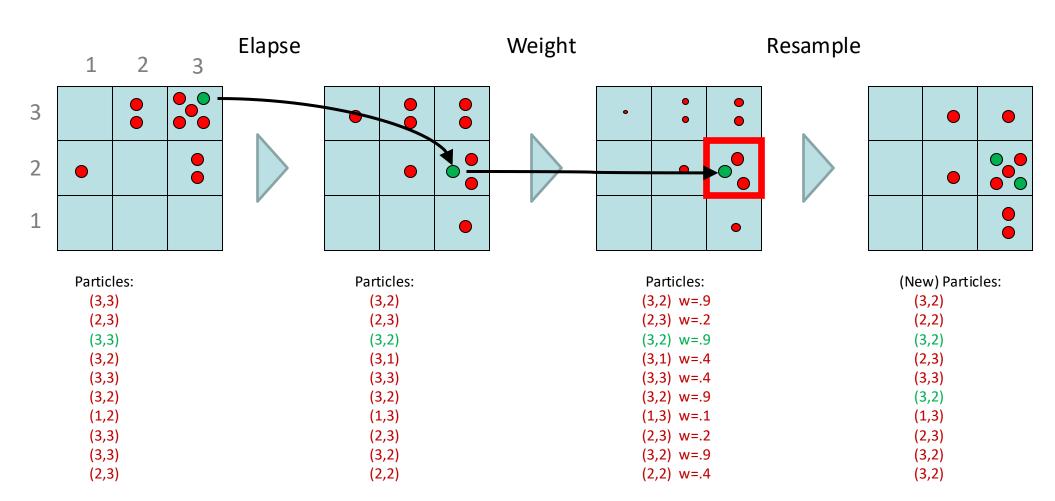
(3,2) (2,3)

(3,3) (3,2) (1,3) (2,3) (3,2) (3,2)

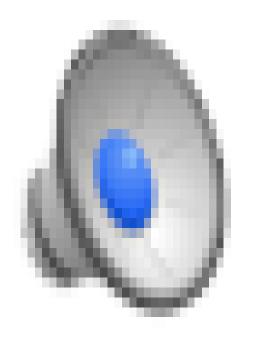


Recap: Particle Filtering

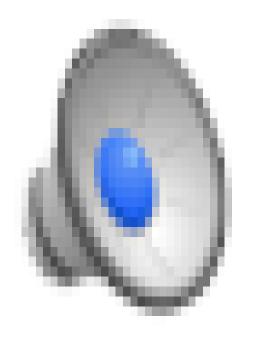
Particles: track samples of states rather than an explicit distribution



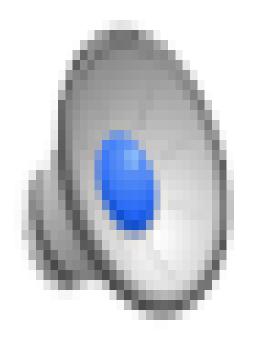
Video of Demo – Moderate Number of Particles



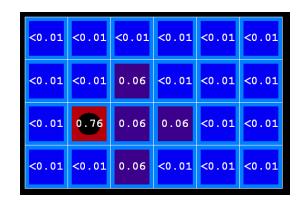
Video of Demo – One Particle

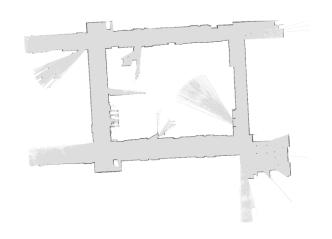


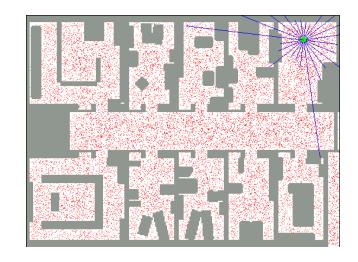
Video of Demo – Huge Number of Particles

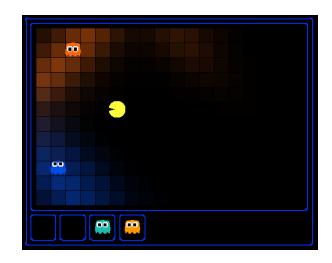


More Demos!





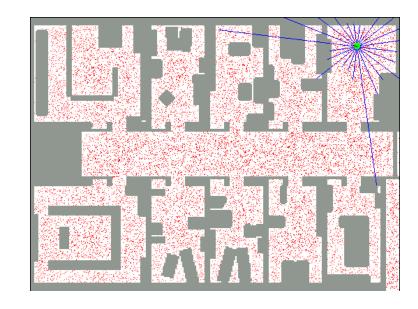


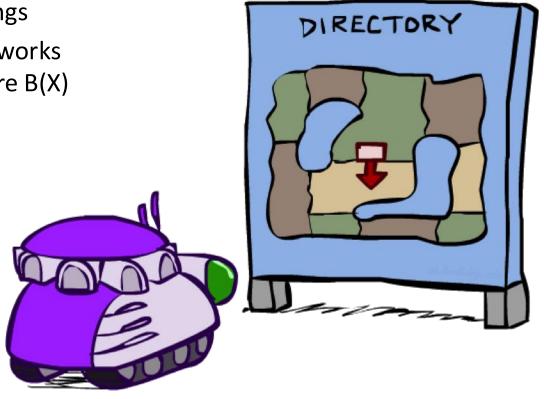


Robot Localization

In robot localization:

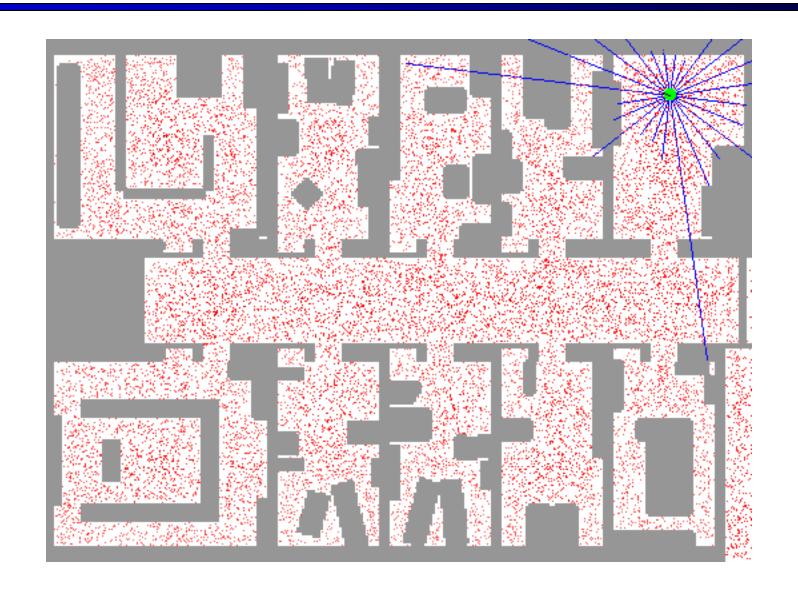
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique





Particle Filter Localization (Sonar)

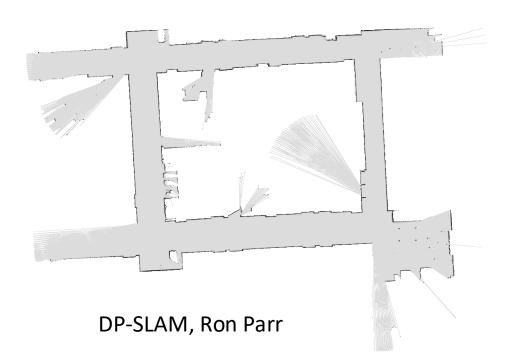
Particle Filter Localization (Laser)

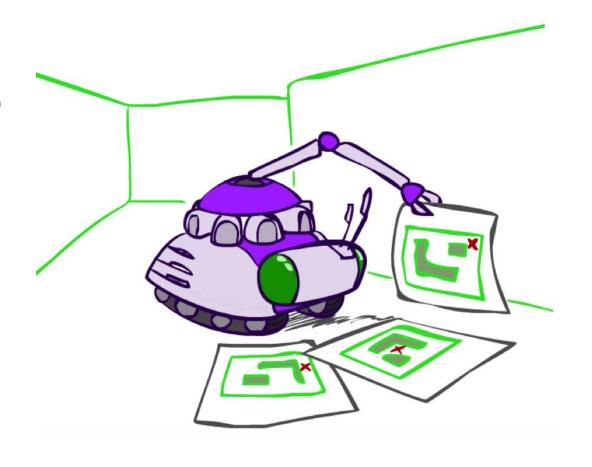


[Video: global-floor.gif]

Robot Mapping

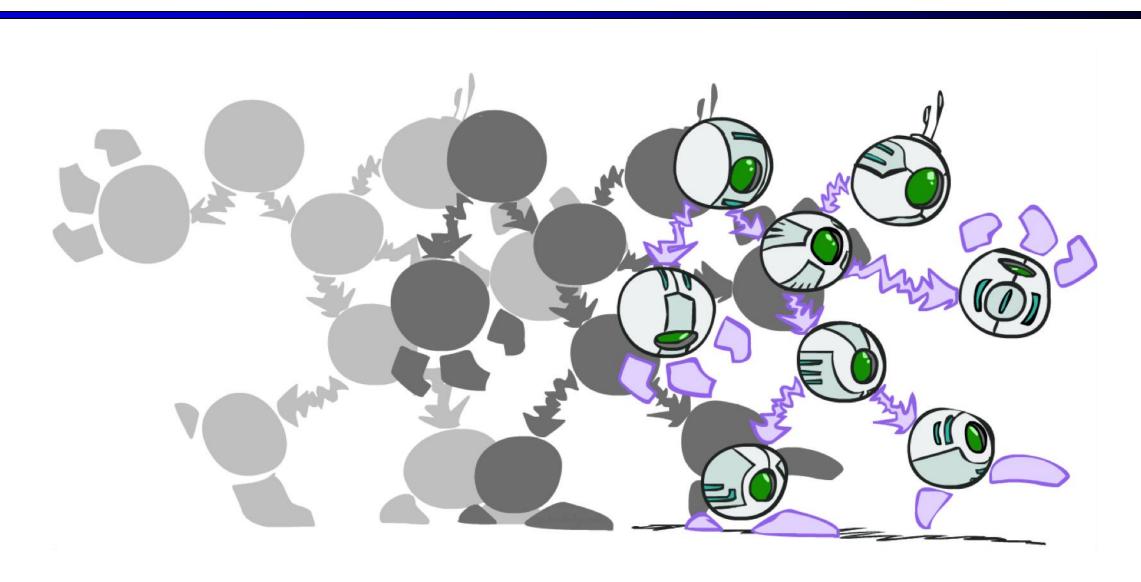
- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods





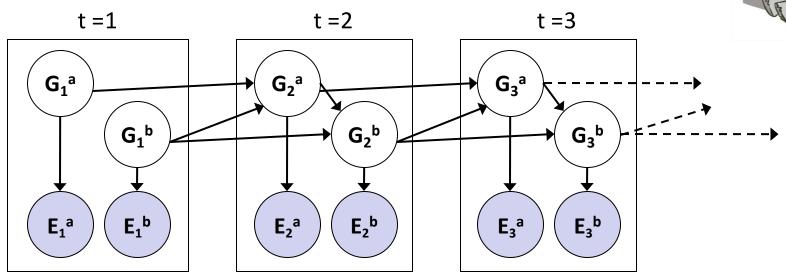
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1



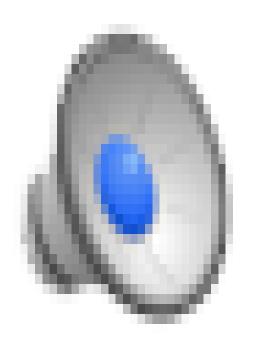


Dynamic Bayes nets are a generalization of HMMs

Pacman – Sonar

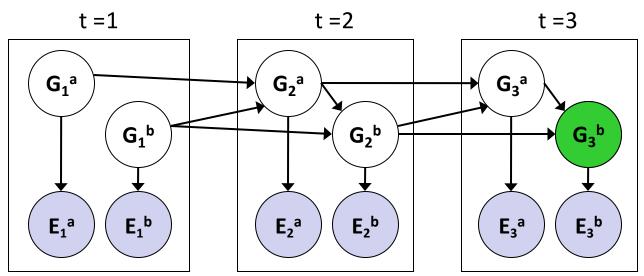
[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman Sonar Ghost DBN Model



Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed



 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Conclusion

- We're done with Part III: Uncertainty!
- We've seen methods for:
 - Representing uncertainty structure via Bayes Nets and multiple ways of doing inference
 - Incorporating decision-making with uncertainty via Decision Nets
 - Exploiting special structure of sequences / time via Markov Models and Hidden Markov Models and exact and approximate inference (Particle Filtering)
- Next up: Part IV: Machine Learning!