
CS 188: Artificial Intelligence 

Neural Nets (wrap-up) and Decision Trees

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ Project 5 (last project) 
▪ Due Friday 4/25 at 11:59pm 

▪ HW9  
▪ Due Wednesday 4/16 at 11:59pm 

▪ HW10 (last homework) 
▪ Due Wednesday 4/23 at 11:59pm 

▪ Final Exam 
▪ Thursday 5/15 from 3:00-6:00pm 
▪ See Exam Logistics on CS 188 website



Today

▪ Neural Nets -- wrap 

▪ Enhanced Training 

▪ Formalizing Learning 
▪ Consistency 
▪ Simplicity 

▪ Decision Trees 
▪ Expressiveness 
▪ Information Gain 
▪ Overfitting



Refresh: Deep Neural Network
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g = nonlinear activation function



Computer Vision: Object Detection



Traditional CV: Features and Generalization

Image HoG



Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



MS COCO Image Captioning Challenge

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more 



Visual QA Challenge
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh 



Speech Recognition

graph credit Matt Zeiler, Clarifai



Machine Translation
Google Neural Machine Translation (2017)



YOLO object detection



Transfer Learning

▪ Problem: how do we efficiently build machine learning models 

▪ Data Labeling is a very time consuming operation that requires human input 

▪ Can we leverage off of existing, similar models? 

▪ Transfer Learning entails using the weights of a similar network as a starting 
point in training a new model 

▪ Domain Adaptation is a simple form of Transfer Learning in which an existing 
model is further trained using a new smaller data set 

▪ Transfer Learning can involve freezing the feature detection part of the 
network to just learn to discriminate and classify



Formalizing Learning: Inductive Learning



Inductive Learning (Science)

▪ Simplest form: learn a function from examples 
▪ A target function: g 
▪ Examples: input-output pairs (x, g(x)) 
▪ E.g. x is an email and g(x) is spam / ham 
▪ E.g. x is a house and g(x) is its selling price 

▪ Problem: 
▪ Given a hypothesis space H 
▪ Given a training set of examples xi 
▪ Find a hypothesis h(x) such that h ~ g 

▪ Includes: 
▪ Classification (outputs = class labels) 
▪ Regression (outputs = real numbers) 

▪ How do perceptron and naïve Bayes fit in?  (H, h, g, etc.)



Inductive Learning

▪ Curve fitting (regression, function approximation): 

▪ Consistency vs. simplicity 
▪ Ockham’s razor



Consistency vs. Simplicity

▪ Fundamental tradeoff: bias vs. variance 

▪ Usually algorithms prefer consistency by default (why?) 

▪ Several ways to operationalize “simplicity” 
▪ Reduce the hypothesis space 

▪ Assume more: e.g. independence assumptions, as in naïve Bayes 
▪ Have fewer, better features / attributes: feature selection 
▪ Other structural limitations (decision lists vs trees) 

▪ Regularization 
▪ Smoothing: cautious use of small counts 
▪ Many other generalization parameters (pruning cutoffs today) 
▪ Hypothesis space stays big, but harder to get to the outskirts



Decision Trees



Features

▪ Features, aka attributes 
▪ Sometimes: TYPE=French 
▪ Sometimes: fTYPE=French(x) = 1



Decision Trees

▪ Compact representation of a function: 
▪ Truth table 
▪ Conditional probability table 
▪ Regression values 

▪ True function 
▪ Realizable: in H



Expressiveness of DTs

▪ Can express any function of the features 

▪ However, we hope for compact trees



Comparison: Perceptrons

▪ What is the expressiveness of a perceptron over these features? 

▪ For a perceptron, a feature’s contribution is either positive or negative 
▪ If you want one feature’s effect to depend on another, you have to add a new conjunction feature 
▪ E.g. adding “PATRONS=full ∧ WAIT = 60” allows a perceptron to model the interaction between the two atomic 

features 

▪ DTs automatically conjoin features / attributes 
▪ Features can have different effects in different branches of the tree! 

▪ Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs) 
▪ Though if the interactions are too complex, may not find the DT greedily



Hypothesis Spaces

▪ How many distinct decision trees with n Boolean attributes? 
= number of Boolean functions over n attributes 
= number of distinct truth tables with 2n rows 
= 2^(2n) 
▪ E.g., with 6 Boolean attributes, there are 
 18,446,744,073,709,551,616 trees 

▪ How many trees of depth 1 (decision stumps)? 
= number of Boolean functions over 1 attribute 
= number of truth tables with 2 rows, times n 
= 4n 
▪ E.g. with 6 Boolean attributes, there are 24 decision stumps 

▪ More expressive hypothesis space: 
▪ Increases chance that target function can be expressed (good) 
▪ Increases number of hypotheses consistent with training set (bad, 

why?) 
▪ Means we can get better predictions (lower bias) 
▪ But we may get worse predictions (higher variance)



Decision Tree Learning

▪ Aim: find a small tree consistent with the training examples 
▪ Idea: (recursively) choose “most significant” attribute as root of (sub)tree



Choosing an Attribute

▪ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or 
“all negative” 

▪ So: we need a measure of how “good” a split is, even if the results aren’t perfectly 
separated out



Entropy and Information

▪ Information answers questions 
▪ The more uncertain about the answer initially, the more 

information in the answer 
▪ Scale: bits 

▪ Answer to Boolean question with prior <1/2, 1/2>?   
▪ Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>? 
▪ Answer to 4-way question with prior <0, 0, 0, 1>? 
▪ Answer to 3-way question with prior <1/2, 1/4, 1/4>? 

▪ A probability p is typical of: 
▪ A uniform distribution of size 1/p 
▪ A code of length log 1/p



Entropy

▪ General answer: if prior is <p1,…,pn>: 
▪ Information is the expected code length 

▪ Also called the entropy of the distribution 
▪ More uniform = higher entropy 
▪ More values = higher entropy 
▪ More peaked = lower entropy 
▪ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit



Information Gain

▪ Back to decision trees! 
▪ For each split, compare entropy before and after 

▪ Difference is the information gain 
▪ Problem: there’s more than one distribution after split! 

▪ Solution: use expected entropy, weighted by the number of 
examples



Next Step: Recurse

▪ Now we need to keep growing the tree! 
▪ Two branches are done (why?) 
▪ What to do under “full”? 

▪ See what examples are there…



Example: Learned Tree

▪ Decision tree learned from these 12 examples: 

▪ Substantially simpler than “true” tree 
▪ A more complex hypothesis isn't justified by data 

▪ Also: it’s reasonable, but wrong



Example: Miles Per Gallon
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mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe



Find the First Split

▪ Look at information gain for 
each attribute 

▪ Note that each attribute is 
correlated with the target! 

▪ What do we split on?



Result: Decision Stump



Next Lecture: Large Language Models & Transformers

▪ Wrap up Decision Trees 

▪ Pruning 

▪ Large Langauge Models 

▪ Transformers


