
CS 188: Artificial Intelligence
Large Language Models and Transformers

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ Project 5 (last project)
▪ Due Friday 4/25 at 11:59pm

▪ HW10 (last homework)
▪ Due Wednesday 4/23 at 11:59pm

▪ Final Exam (last exam)
▪ Thursday 5/15 from 3:00-6:00pm
▪ See Exam Logistics on CS 188 website

Decision Trees: wrap-up

Example: Miles Per Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Find the First Split

▪ Look at information gain for
each attribute

▪ Note that each attribute is
correlated with the target!

▪ What do we split on?

Result: Decision Stump

Second Level

Final Tree

MPG Training
Error

The test set error is much worse than the
training set error…

…why?

Reminder: Overfitting

▪ Overfitting:
▪ When you stop modeling the patterns in the training data (which

generalize)
▪ And start modeling the noise (which doesn’t)

▪ We had this before:
▪ Naïve Bayes: needed to smooth
▪ Perceptron: early stopping

Consider this
split

Keeping it General

▪ Pruning:
▪ Build the full decision tree
▪ Begin at the bottom of the tree
▪ Delete splits in which
 pCHANCE > MaxPCHANCE

▪ Continue working upward until
there are no more prunable
nodes

▪ Note: some chance nodes may
not get pruned because they
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b

Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved
test set accuracy

compared with the
unpruned tree

Regularization

▪ MaxPCHANCE is a regularization parameter

▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE

IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test

Training

Two Ways of Controlling Overfitting

▪ Limit the hypothesis space
▪ E.g. limit the max depth of trees
▪ Easier to analyze

▪ Regularize the hypothesis selection
▪ E.g. chance cutoff
▪ Skip most of the hypotheses unless data is clear
▪ Usually done in practice

Large Language Model Transformers

Today’s AI

Large Language Models

▪ Feature engineering
▪ Text tokenization
▪ Word embeddings

▪ Deep neural networks
▪ Autoregressive models
▪ Self-attention mechanisms
▪ Transformer architecture

▪ Multi-class classification

▪ Supervised learning
▪ Self-supervised learning
▪ Instruction tuning

▪ Reinforcement learning
▪ … from human feedback (RLHF)

▪ Policy search
▪ Policy gradient methods

▪ Beam search

Deep Neural Networks

▪ Input: some text

▪ “The dog chased the”

▪ Output: more text
▪ … “ ball”

▪ Implementation:
▪ Linear algebra
▪ How??

Text Tokenization

https://platform.openai.com/tokenizer

Text Tokenization

https://platform.openai.com/tokenizer

Text Tokenization

https://platform.openai.com/tokenizer

Word Embeddings

▪ Input: some text

▪ “The”
▪ “ dog”
▪ “ chased”
▪ “ the”

▪ Output: more text

▪ “ ball” un-embed

embed

embed

embed

embed

tokenize

tokenize

tokenize

tokenize

un-tokenize

[791]
[5679]
[62920]
[279]

[5041]

pr
ed

ic
t

one-hot

What do word embeddings look like?

▪ Words cluster by similarity:

ig.ft.com/generative-ai

What do word embeddings look like?

▪ Features learned in language models:

ig.ft.com/generative-ai

What do word embeddings look like?

▪ Signs of sensible algebra in embedding space:

[Efficient estimation of word representations in vector space, Mikolov et al, 2013]

Aside: interactive explainer of modern language models

ig.ft.com/generative-ai

Large Language Models

▪ Feature engineering
▪ Text tokenization
▪ Word embeddings

▪ Deep neural networks
▪ Autoregressive models
▪ Self-attention mechanisms
▪ Transformer architectures

▪ Multi-class classification

▪ Supervised learning
▪ Self-supervised learning
▪ Instruction tuning

▪ Reinforcement learning
▪ … from human feedback (RLHF)

▪ Policy search
▪ Policy gradient methods

▪ Beam search

Autoregressive Models

pr
ed

ic
t

“The”
(pad)

(pad)
(pad)

“ dog”

“The”
“ dog”

(pad)
(pad)

“ chased”

“The”
“ dog”

“ chased”
(pad)

“ the”

“The”
“ dog”

“ chased”
“ the”

“ ball”

Autoregressive Models

▪ Predict output one piece at a time (e.g. word, token, pixel, etc.)

▪ Concatenate: input + output

▪ Feed result back in as new input

▪ Repeat

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛⋯

Self-Attention Mechanisms

Self-Attention Mechanisms

▪ Instead of conditioning on all
input tokens equally…

▪ Pay more attention to
relevant tokens!

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑥6𝒙𝟓

𝑥1 𝒙𝟐
𝒙𝟑 𝑥4 𝑥6

𝑥5

Self-Attention Mechanisms

ig.ft.com/generative-ai

MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight

normalize & softmax

a2a1 a3

• • •

+

x'output

MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight a2a1 a3

• • •

+

x2output

normalize & softmax

MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight a2a1 a3

• • •

+

x3output

normalize & softmax

MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight

normalize & softmax

a2a1 a3

• • •

+

x4output

Multi-Headed Attention

Multi-Headed Attention

softmax(k•q)/d • v

[x1 , x2 , x3 ,
…]

MLP

x'

k q v

concatenate

z2 z3

MLP

z1

x'

softmax(k•q)/d • v

MLP

k q v
softmax(k•q)/d • v

[x1 , x2 , x3 ,
…]

MLP

k q v
softmax(k•q)/d • v

MLP

k q v

Single-headed Multi-headed

Multi-Headed Attention
Head 6: previous word

https://github.com/jessevig/bertviz

Multi-Headed Attention

https://github.com/jessevig/bertviz

Head 4: pronoun references

Transformer Architecture

Transformer Architecture

MLP

LayerNorm

LayerNorm

Multi-Headed
Attention

Transformer
Block=

Transformer
Block

Transformer
Block

Transformer
Block

…

Transformer Architecture

Transformer
Block

Tokenize

Embed

Un-embed

Un-tokenize

“The dog chased the”

“ ball”

x N

Large Language Models

▪ Feature engineering
▪ Text tokenization
▪ Word embeddings

▪ Deep neural networks
▪ Autoregressive models
▪ Self-attention mechanisms
▪ Transformer architectures

▪ Multi-class classification

▪ Supervised learning
▪ Self-supervised learning
▪ Instruction tuning

▪ Reinforcement learning
▪ … from human feedback (RLHF)

▪ Policy search
▪ Policy gradient methods

▪ Beam search

▪ Do we always need human supervision to learn features?
▪ Can’t we learn general-purpose features?
▪ Key hypothesis:
▪ IF neural network smart enough to predict:

▪ Next frame in video
▪ Next word in sentence
▪ Generate realistic images
▪ ``Translate’’ images
▪ …

▪ THEN same neural network is ready to do Supervised Learning from a very small
data-set

Unsupervised / Self-Supervised Learning

Task 1

Task 2

Transfer from Unsupervised Learning

…in

Task 1 = unsupervised

Task 2 = real task

Example Setting

…text

Task 1 = predict next word

Task 2 = predict sentiment

Image Pre-Training: Predict Missing Patch

▪ Pre-Train: train a large model with a lot of data on a self-
supervised task
▪ Predict next word / patch of image

▪ Predict missing word / patch of image

▪ Predict if two images are related (contrastive learning)

▪ Fine-Tune: continue training the same model on task you care
about

Pre-Training and Fine-Tuning

1

2

Instruction Tuning

▪ (learns to mimic human-written text)
▪ Query: “What is population of Berkeley?”

▪ Human-like completion: “This question always fascinated me!”

▪
▪ Query: “What is population of Berkeley?”

▪ Helpful completion: “It is 117,145 as of 2021 census.”

▪ Fine-tune on collected examples of helpful human conversations

▪ Also can use Reinforcement Learning

Task 1 = predict next word

Task 2 = generate helpful text

Reinforcement Learning from Human Feedback

▪ MDP:
▪ State: sequence of words seen so far (ex. “What is population of Berkeley? ”)

▪ 100,0001,000 possible states
▪ Huge, but can be processed with feature vectors or neural networks

▪ Action: next word (ex. “It”, “chair”, “purple”, …) (so 100,000 actions)
▪ Hard to compute when is over 100K actions!

▪ Transition T: easy, just append action word to state words
▪ s: “My name“ a: “is“ s’: “My name is“

▪ Reward R: ???
▪ Humans rate model completions (ex. “What is population of Berkeley? ”)

▪ “It is 117,145“: +1 “It is 5“: -1 “Destroy all humans“: -1

▪ Learn a reward model and use that (model-based RL)

▪ Commonly use policy search (Proximal Policy Optimization) but looking into Q Learning

max
𝑎

𝑄(𝑠′ , 𝑎) max

�̂�

Large Language Models

▪ Feature engineering
▪ Text tokenization
▪ Word embeddings

▪ Deep neural networks
▪ Autoregressive models
▪ Self-attention mechanisms
▪ Transformer architectures

▪ Multi-class classification

▪ Supervised learning
▪ Self-supervised learning
▪ Instruction tuning

▪ Reinforcement learning
▪ … from human feedback (RLHF)

▪ Policy search
▪ Policy gradient methods

▪ Beam search

Policy Search

Policy Gradient Methods

1. Initialize policy somehow

2. Estimate policy performance:

3. Improve policy:
▪ Hill climbing

▪ Change , evaluate new policy, keep if better

▪ Gradient ascent
▪ Estimate , change to ascend gradient:

4. Repeat

𝜋𝜃

𝐽(𝜃) = 𝑉 𝜋𝜃(𝑠0)

𝜃

∇𝜃 𝐽(𝜃) 𝜃 𝜃𝑘+1 = 𝜃𝑘 + 𝛼 ∇𝜃𝐽(𝜃𝑘)

Estimating the Policy Gradient*

▪ Define the advantage function:
▪ Note that expected TD error equals expected advantage:

▪
▪ Policy Gradient Theorem:

▪ Let denote a trajectory from an arbitrary episode

▪

▪ Estimate :

▪

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉 𝜋(𝑠)

𝔼𝜋[𝛿𝑡] = 𝔼𝜋[𝑟𝑡 + 𝛾𝑉 𝜋(𝑠𝑡+1) − 𝑉 𝜋(𝑠𝑡)] = 𝔼𝜋[𝑄𝜋(𝑠𝑡, 𝑎𝑡) − 𝑉 𝜋(𝑠𝑡)]

𝜏

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃[
𝜏

∑
𝑡=0

𝐴𝜋(𝑠𝑡, 𝑎𝑡)∇𝜃log𝜋𝜃(𝑎𝑡 𝑠𝑡)]
∇𝜃 𝐽(𝜃)

∇𝜃𝐽(𝜃) ≈
1
𝑁

𝑁

∑
𝑖=1

𝜏𝑖

∑
𝑡=0

(𝑟𝑡 + 𝛾𝑉 𝜋(𝑠𝑡+1) − 𝑉 𝜋(𝑠𝑡))∇𝜃log𝜋𝜃(𝑎𝑡 𝑠𝑡)

Large Language Models

▪ Feature engineering
▪ Text tokenization
▪ Word embeddings

▪ Deep neural networks
▪ Autoregressive models
▪ Self-attention mechanisms
▪ Transformer architectures

▪ Multi-class classification

▪ Supervised learning
▪ Self-supervised learning
▪ Instruction tuning

▪ Reinforcement learning
▪ … from human feedback (RLHF)

▪ Policy search
▪ Policy gradient methods

▪ Beam search

Beam Search

7

9

7

8

10

9

8

t=0
9

t=1
8

t=2

8

t=3
9

t=4
10

t=5

9
7

6

8 8

9

3
t=6 t=7 t=8

6

7

7

7 3

9

9
t=9 t=10 t=11

9

9

Random restarts

Beam Search

7

9

8

7

9

9

6

7

7

9

10

3

8

10

5

9

9

7

9

6

9

8

7

7

9

7

8

9

10

3

3

9

8

8

7

6

t=0

t=0

t=0

t=0

9

9

8

7

t=1

t=1

t=1

t=1

10

9

9

8
t=2

t=2

t=2

t=2

8

8

7

6

t=0

t=0

t=0

t=0

9

9

9

8

t=1

t=1

t=1

t=1

10

10

9

9

t=2

t=2

t=2

t=2

Parallel search Beam search

Beam Search

ig.ft.com/generative-ai

Tracking Progress

[OpenAI]

▪ How well AI can
do human tasks

Where to go next?

▪ Congratulations, you’ve seen the basics of modern AI
▪ … and done some amazing work putting it to use!

▪ How to continue:
▪ Machine learning: cs189, cs182, stat154, ind. eng. 142
▪ Data Science: data100, data 102
▪ Data Ethics: data c104
▪ Probability: ee126, stat134
▪ Optimization: ee127
▪ Cognitive modeling: cog sci 131
▪ Machine learning theory: cs281a/b
▪ Computer vision: cs280
▪ Deep RL: cs285
▪ NLP: cs288
▪ Special topics: cs194-?
▪ … and more; ask if you’re interested

Special Thanks

Ketrina Yim
CS188 Artist

