
CS 188: Artificial Intelligence 
Large Language Models and Transformers 

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Announcements

▪ Project 5 (last project) 
▪ Due Friday 4/25 at 11:59pm 

▪ HW10 (last homework) 
▪ Due Wednesday 4/23 at 11:59pm 

▪ Final Exam (last exam) 
▪ Thursday 5/15 from 3:00-6:00pm 
▪ See Exam Logistics on CS 188 website



Decision Trees: wrap-up



Example: Miles Per Gallon
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mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe



Find the First Split

▪ Look at information gain for 
each attribute 

▪ Note that each attribute is 
correlated with the target! 

▪ What do we split on?



Result: Decision Stump



Second Level



Final Tree



MPG Training 
Error

The test set error is much worse than the 
training set error… 

…why?



Reminder: Overfitting

▪ Overfitting: 
▪ When you stop modeling the patterns in the training data (which 

generalize) 
▪ And start modeling the noise (which doesn’t) 

▪ We had this before: 
▪ Naïve Bayes: needed to smooth 
▪ Perceptron: early stopping



Consider this 
split



Keeping it General

▪ Pruning: 
▪ Build the full decision tree 
▪ Begin at the bottom of the tree 
▪ Delete splits in which  
  pCHANCE > MaxPCHANCE 

▪ Continue working upward until 
there are no more prunable 
nodes 

▪ Note: some chance nodes may 
not get pruned because they 
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b



Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved 
test set accuracy 

compared with the 
unpruned tree



Regularization

▪ MaxPCHANCE is a regularization parameter 

▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE

IncreasingDecreasing
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High Bias High Variance

Held-out / Test

Training



Two Ways of Controlling Overfitting

▪ Limit the hypothesis space 
▪ E.g. limit the max depth of trees 
▪ Easier to analyze 

▪ Regularize the hypothesis selection 
▪ E.g. chance cutoff 
▪ Skip most of the hypotheses unless data is clear 
▪ Usually done in practice



Large Language Model Transformers



Today’s AI



Large Language Models

▪ Feature engineering 
▪ Text tokenization 
▪ Word embeddings 

▪ Deep neural networks 
▪ Autoregressive models 
▪ Self-attention mechanisms 
▪ Transformer architecture 

▪ Multi-class classification

▪ Supervised learning 
▪ Self-supervised learning 
▪ Instruction tuning 

▪ Reinforcement learning 
▪ … from human feedback (RLHF) 

▪ Policy search 
▪ Policy gradient methods 

▪ Beam search



Deep Neural Networks

▪ Input: some text 

▪ “The dog chased the” 

▪ Output: more text 
▪                                         … “ ball” 

▪ Implementation: 
▪ Linear algebra 
▪ How??



Text Tokenization

https://platform.openai.com/tokenizer



Text Tokenization

https://platform.openai.com/tokenizer



Text Tokenization

https://platform.openai.com/tokenizer



Word Embeddings

▪ Input: some text 

▪ “The” 
▪ “ dog” 
▪ “ chased” 
▪ “ the” 

▪ Output: more text 

▪ “ ball” un-embed

embed

embed

embed

embed

tokenize

tokenize

tokenize

tokenize

un-tokenize

[791] 
[5679] 
[62920] 
[279]

[5041]

pr
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t

one-hot



What do word embeddings look like?

▪ Words cluster by similarity:

ig.ft.com/generative-ai



What do word embeddings look like?

▪ Features learned in language models:

ig.ft.com/generative-ai



What do word embeddings look like?

▪ Signs of sensible algebra in embedding space:

[Efficient estimation of word representations in vector space, Mikolov et al, 2013]



Aside: interactive explainer of modern language models

ig.ft.com/generative-ai



Large Language Models

▪ Feature engineering 
▪ Text tokenization 
▪ Word embeddings 

▪ Deep neural networks 
▪ Autoregressive models 
▪ Self-attention mechanisms 
▪ Transformer architectures 

▪ Multi-class classification

▪ Supervised learning 
▪ Self-supervised learning 
▪ Instruction tuning 

▪ Reinforcement learning 
▪ … from human feedback (RLHF) 

▪ Policy search 
▪ Policy gradient methods 

▪ Beam search



Autoregressive Models
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Autoregressive Models

▪ Predict output one piece at a time (e.g. word, token, pixel, etc.)  

▪ Concatenate: input + output 

▪ Feed result back in as new input 

▪ Repeat

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛⋯



Self-Attention Mechanisms



Self-Attention Mechanisms

▪ Instead of conditioning on all 
input tokens equally… 

▪ Pay more attention to 
relevant tokens!

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑥6𝒙𝟓

𝑥1 𝒙𝟐
𝒙𝟑 𝑥4 𝑥6

𝑥5



Self-Attention Mechanisms

ig.ft.com/generative-ai



MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight

normalize & softmax

a2a1 a3

• • •

+

x'output



MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight a2a1 a3

• • •

+

x2output

normalize & softmax



MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight a2a1 a3

• • •

+

x3output

normalize & softmax



MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight

normalize & softmax

a2a1 a3

• • •

+

x4output



Multi-Headed Attention



Multi-Headed Attention

softmax(k•q)/d • v

[x1 , x2 , x3 , 
…]

MLP

x'

k q v

concatenate

z2 z3

MLP

z1

x'

softmax(k•q)/d • v

MLP

k q v
softmax(k•q)/d • v

[x1 , x2 , x3 , 
…]

MLP

k q v
softmax(k•q)/d • v

MLP

k q v

Single-headed Multi-headed



Multi-Headed Attention
Head 6: previous word

https://github.com/jessevig/bertviz



Multi-Headed Attention

https://github.com/jessevig/bertviz

Head 4: pronoun references



Transformer Architecture



Transformer Architecture
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Transformer Architecture
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Large Language Models

▪ Feature engineering 
▪ Text tokenization 
▪ Word embeddings 

▪ Deep neural networks 
▪ Autoregressive models 
▪ Self-attention mechanisms 
▪ Transformer architectures 

▪ Multi-class classification

▪ Supervised learning 
▪ Self-supervised learning 
▪ Instruction tuning 

▪ Reinforcement learning 
▪ … from human feedback (RLHF) 

▪ Policy search 
▪ Policy gradient methods 

▪ Beam search



▪ Do we always need human supervision to learn features? 
▪ Can’t we learn general-purpose features? 
▪ Key hypothesis: 
▪ IF neural network smart enough to predict:  

▪ Next frame in video 
▪ Next word in sentence 
▪ Generate realistic images 
▪ ``Translate’’ images 
▪ … 

▪ THEN same neural network is ready to do Supervised Learning from a very small 
data-set

Unsupervised / Self-Supervised Learning

Task 1

Task 2



Transfer from Unsupervised Learning

…in

Task 1 = unsupervised

Task 2 = real task



Example Setting

…text

Task 1 = predict next word

Task 2 = predict sentiment



Image Pre-Training: Predict Missing Patch



▪ Pre-Train: train a large model with a lot of data on a self-
supervised task 
▪ Predict next word / patch of image 

▪ Predict missing word / patch of image 

▪ Predict if two images are related (contrastive learning) 

▪ Fine-Tune: continue training the same model on task you care 
about

Pre-Training and Fine-Tuning

1

2



Instruction Tuning

▪                                                      (learns to mimic human-written text) 
▪ Query: “What is population of Berkeley?” 

▪ Human-like completion: “This question always fascinated me!” 

▪   
▪ Query: “What is population of Berkeley?” 

▪ Helpful completion: “It is 117,145 as of 2021 census.” 

▪ Fine-tune on collected examples of helpful human conversations 

▪ Also can use Reinforcement Learning

Task 1 = predict next word

Task 2 = generate helpful text



Reinforcement Learning from Human Feedback

▪ MDP: 
▪ State: sequence of words seen so far (ex. “What is population of Berkeley? ”) 

▪ 100,0001,000 possible states 
▪ Huge, but can be processed with feature vectors or neural networks 

▪ Action: next word (ex. “It”, “chair”, “purple”, …) (so 100,000 actions) 
▪ Hard to compute  when  is over 100K actions!  

▪ Transition T: easy, just append action word to state words 
▪ s: “My name“ a: “is“ s’: “My name is“ 

▪ Reward R: ??? 
▪ Humans rate model completions (ex. “What is population of Berkeley? ”) 

▪ “It is 117,145“: +1   “It is 5“: -1   “Destroy all humans“: -1 

▪ Learn a reward model  and use that (model-based RL) 

▪ Commonly use policy search (Proximal Policy Optimization) but looking into Q Learning

max
𝑎

𝑄(𝑠′ , 𝑎) max

�̂�



Large Language Models

▪ Feature engineering 
▪ Text tokenization 
▪ Word embeddings 

▪ Deep neural networks 
▪ Autoregressive models 
▪ Self-attention mechanisms 
▪ Transformer architectures 

▪ Multi-class classification

▪ Supervised learning 
▪ Self-supervised learning 
▪ Instruction tuning 

▪ Reinforcement learning 
▪ … from human feedback (RLHF) 

▪ Policy search 
▪ Policy gradient methods 

▪ Beam search



Policy Search



Policy Gradient Methods

1. Initialize policy  somehow 

2. Estimate policy performance:  

3. Improve policy: 
▪ Hill climbing 

▪ Change , evaluate new policy, keep if better 

▪ Gradient ascent 
▪ Estimate , change  to ascend gradient:  

4. Repeat

𝜋𝜃

𝐽(𝜃) = 𝑉 𝜋𝜃(𝑠0)

𝜃

∇𝜃 𝐽(𝜃) 𝜃 𝜃𝑘+1 = 𝜃𝑘 + 𝛼 ∇𝜃𝐽(𝜃𝑘)



Estimating the Policy Gradient*

▪ Define the advantage function: 
▪ Note that expected TD error equals expected advantage: 

▪
▪ Policy Gradient Theorem: 

▪ Let denote a trajectory from an arbitrary episode 

▪

▪ Estimate :

▪

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉 𝜋(𝑠) 

𝔼𝜋[𝛿𝑡] = 𝔼𝜋[𝑟𝑡 + 𝛾𝑉 𝜋(𝑠𝑡+1) − 𝑉 𝜋(𝑠𝑡)] = 𝔼𝜋[𝑄𝜋(𝑠𝑡, 𝑎𝑡) − 𝑉 𝜋(𝑠𝑡)]

𝜏 

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃[
𝜏

∑
𝑡=0

𝐴𝜋(𝑠𝑡, 𝑎𝑡)∇𝜃log𝜋𝜃(𝑎𝑡 𝑠𝑡)]
∇𝜃 𝐽(𝜃)

∇𝜃𝐽(𝜃) ≈
1
𝑁

𝑁

∑
𝑖=1

𝜏𝑖

∑
𝑡=0

(𝑟𝑡 + 𝛾𝑉 𝜋(𝑠𝑡+1) − 𝑉 𝜋(𝑠𝑡))∇𝜃log𝜋𝜃(𝑎𝑡 𝑠𝑡)



Large Language Models

▪ Feature engineering 
▪ Text tokenization 
▪ Word embeddings 

▪ Deep neural networks 
▪ Autoregressive models 
▪ Self-attention mechanisms 
▪ Transformer architectures 

▪ Multi-class classification

▪ Supervised learning 
▪ Self-supervised learning 
▪ Instruction tuning 

▪ Reinforcement learning 
▪ … from human feedback (RLHF) 

▪ Policy search 
▪ Policy gradient methods 

▪ Beam search



Beam Search
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Beam Search
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Beam Search

ig.ft.com/generative-ai



Tracking Progress

[OpenAI]

▪ How well AI can 
do human tasks



Where to go next?

▪ Congratulations, you’ve seen the basics of modern AI 
▪ … and done some amazing work putting it to use! 

▪ How to continue: 
▪ Machine learning: cs189, cs182, stat154, ind. eng. 142 
▪ Data Science: data100, data 102 
▪ Data Ethics: data c104 
▪ Probability: ee126, stat134 
▪ Optimization: ee127 
▪ Cognitive modeling: cog sci 131 
▪ Machine learning theory: cs281a/b 
▪ Computer vision: cs280 
▪ Deep RL: cs285 
▪ NLP: cs288 
▪ Special topics: cs194-? 
▪ … and more; ask if you’re interested



Special Thanks

Ketrina Yim 
CS188 Artist 




