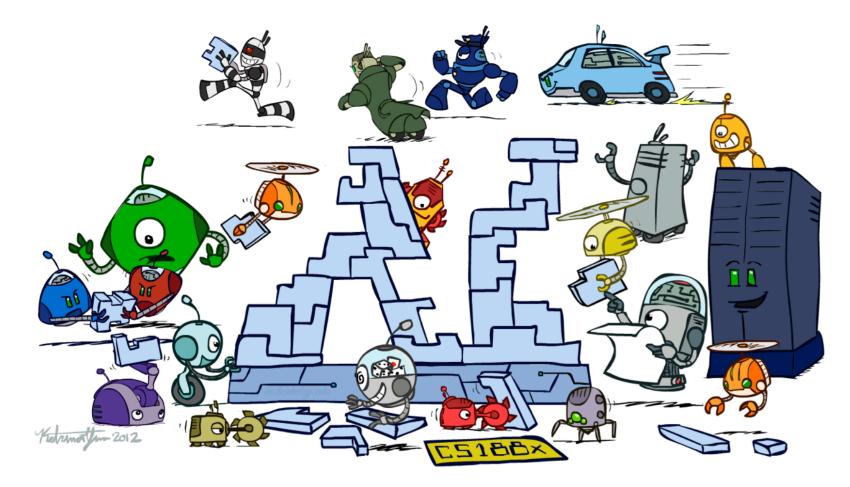
CS 188: Artificial Intelligence Large Language Models and Transformers



Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

- Project 5 (last project)
 - Due Friday 4/25 at 11:59pm
- HW10 (last homework)
 - Due Wednesday 4/23 at 11:59pm
- Final Exam (last exam)
 - Thursday 5/15 from 3:00-6:00pm
 - See Exam Logistics on CS 188 website

Decision Trees: wrap-up

Example: Miles Per Gallon

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

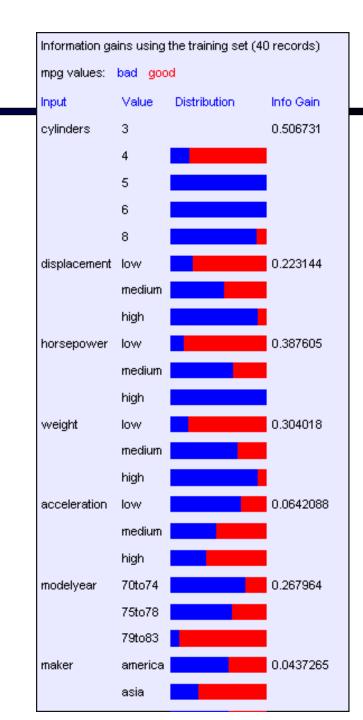
40 Examples

Find the First Split

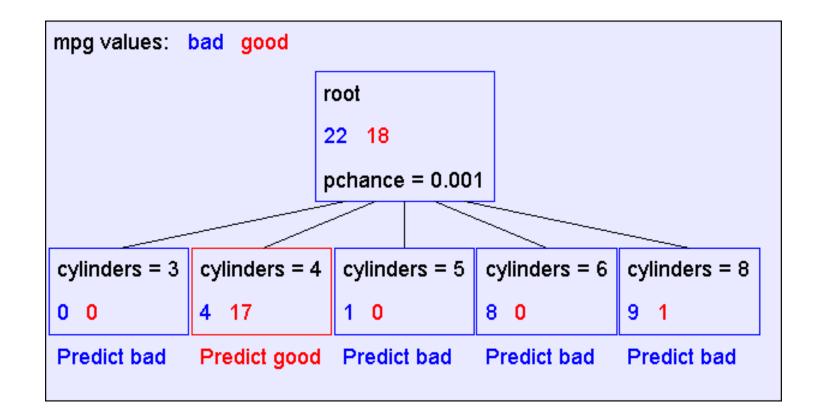
 Look at information gain for each attribute

Note that each attribute is correlated with the target!

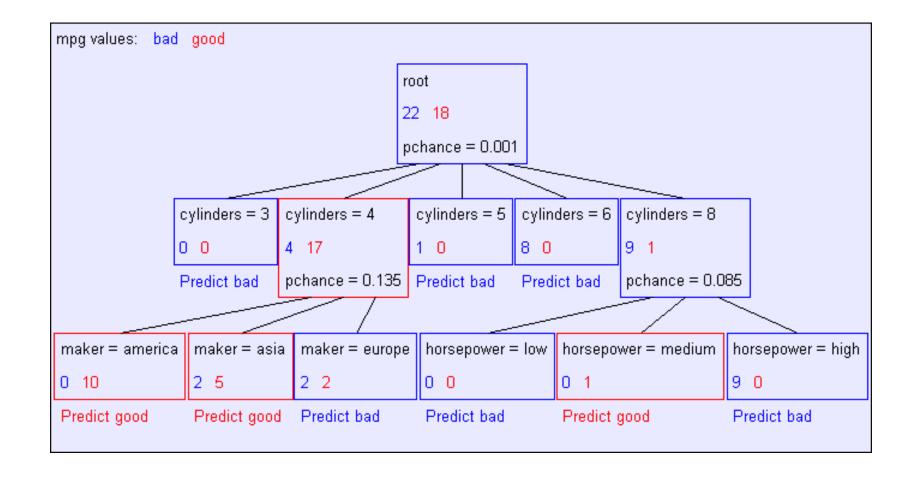
What do we split on?

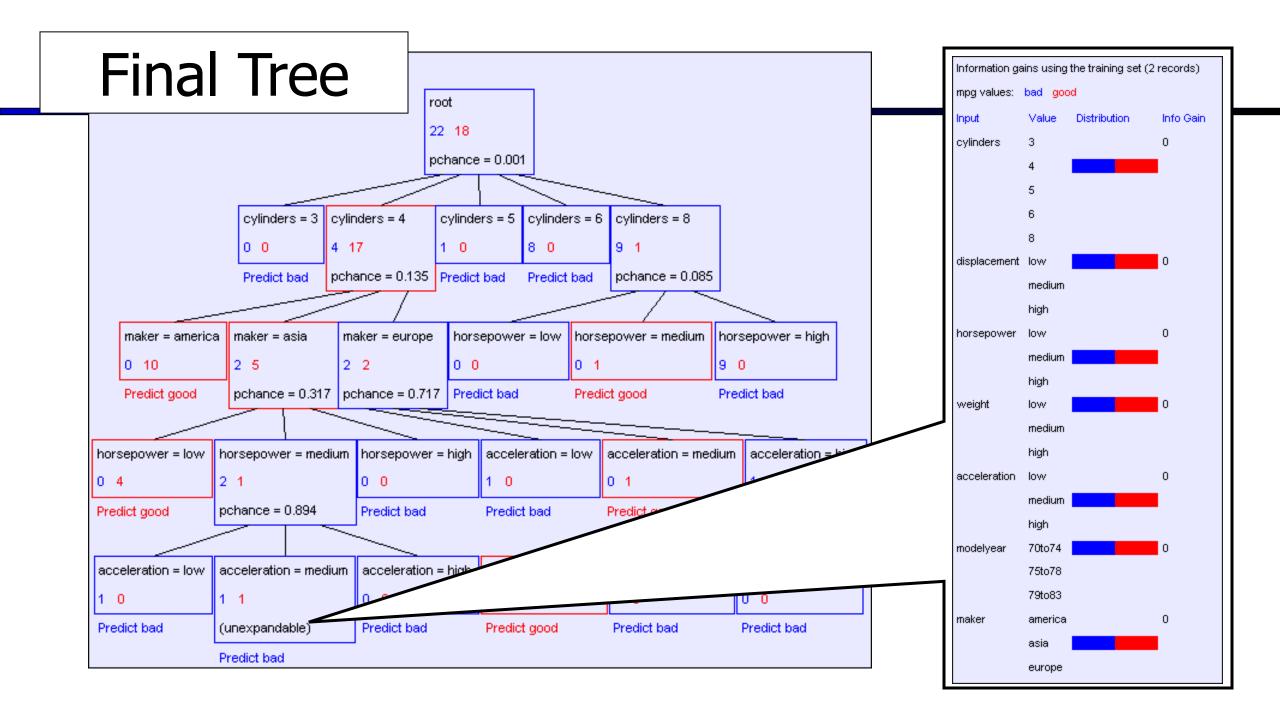


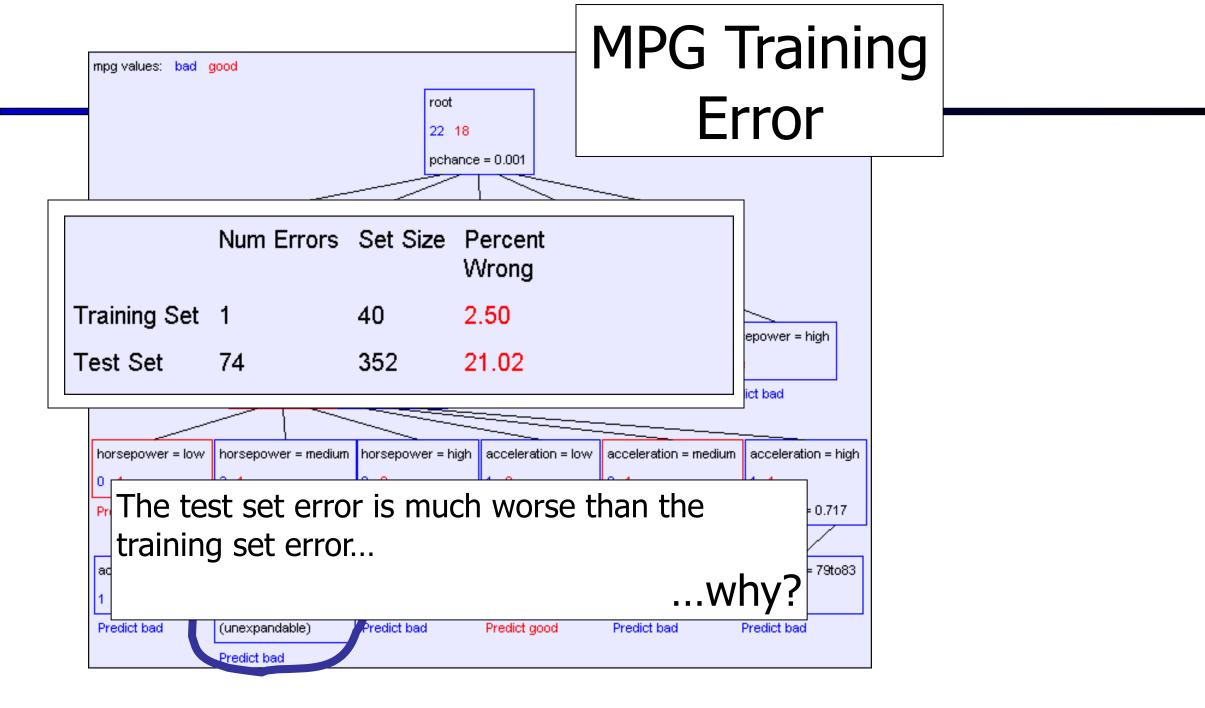
Result: Decision Stump



Second Level







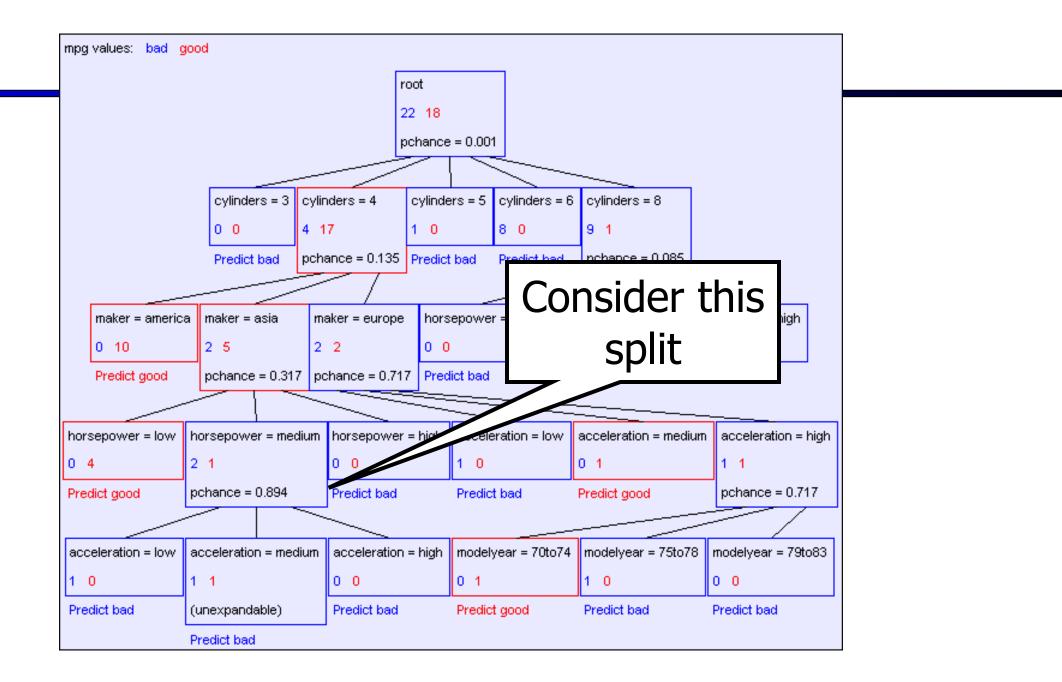
Reminder: Overfitting

Overfitting:

- When you stop modeling the patterns in the training data (which generalize)
- And start modeling the noise (which doesn't)

We had this before:

- Naïve Bayes: needed to smooth
- Perceptron: early stopping



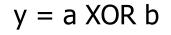
Keeping it General

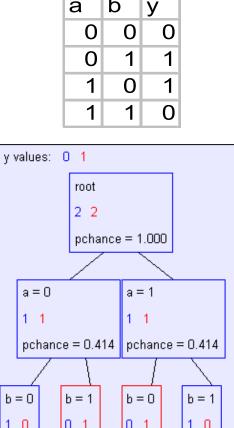
Pruning:

- Build the full decision tree
- Begin at the bottom of the tree
- Delete splits in which

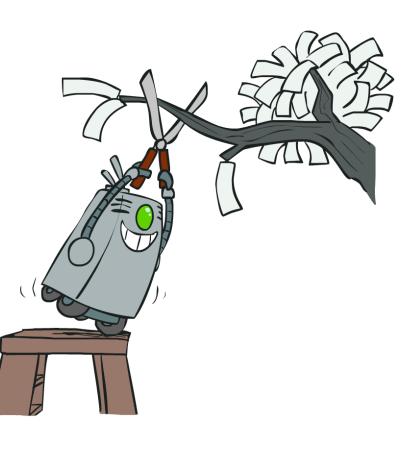
p_{CHANCE} > MaxP_{CHANCE}

- Continue working upward until there are no more prunable nodes
- Note: some chance nodes may not get pruned because they were "redeemed" later

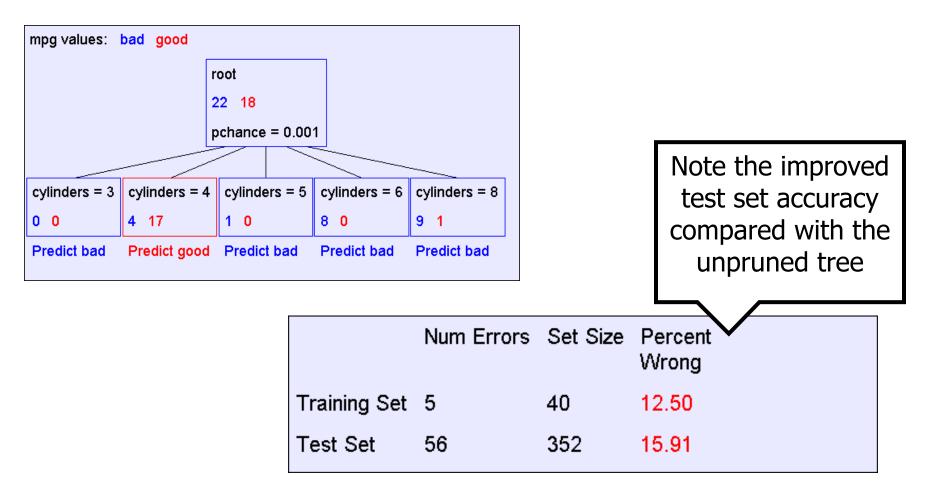




Predict 0 Predict 1 Predict 1 Predict 0

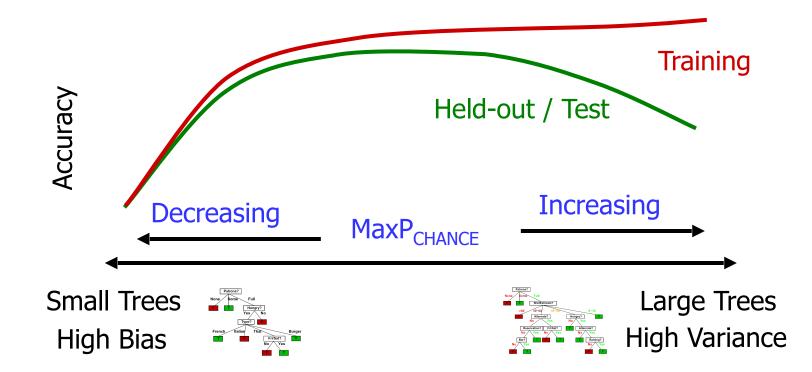


Pruning example



Regularization

- MaxP_{CHANCE} is a regularization parameter
- Generally, set it using held-out data (as usual)



Two Ways of Controlling Overfitting

Limit the hypothesis space

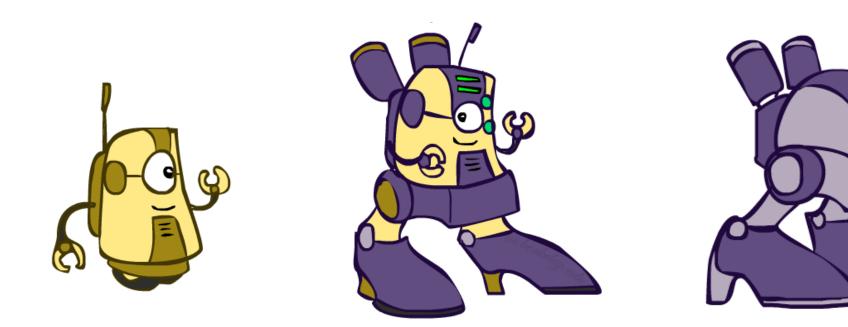
- E.g. limit the max depth of trees
- Easier to analyze

Regularize the hypothesis selection

- E.g. chance cutoff
- Skip most of the hypotheses unless data is clear
- Usually done in practice

Large Language Model Transformers

0



Today's Al

- ChatGPT 4 ~	C	A Untitled ~	:
How can I help you today?		*	
		What can I help you with today?	
Message ChatGPT		Message Claude	Ø
ChatGPT can make mistakes. Consider checking important information.		Claude 3 Opus ~	

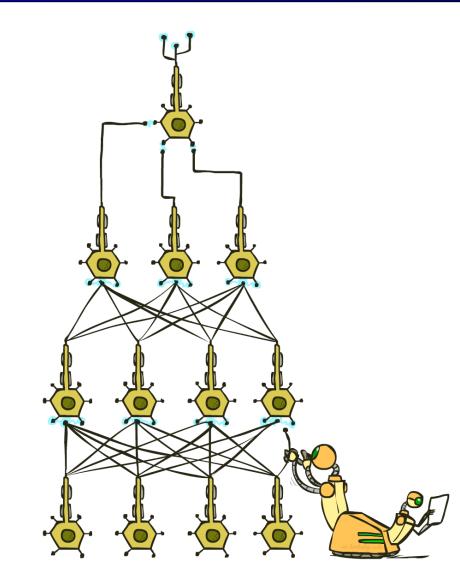
Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architecture
- Multi-class classification

Supervised learning

- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Deep Neural Networks



- Input: some text
 - "The dog chased the"
- Output: more text
 - ... " ball"
- Implementation:
 - Linear algebra
 - How??

Text Tokenization

GPT-3.5 & GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: ****

Sequences of characters commonly found next to each other may be grouped together: 1234567890

https://platform.openai.com/tokenizer

///

Text Tokenization

GPT-3.5 & GPT-4 GPT-3 (Legacy)

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: 000000

Sequences of characters commonly found next to each other may be grouped together: 1234567890

Text Token IDs

https://platform.openai.com/tokenizer

Text Tokenization

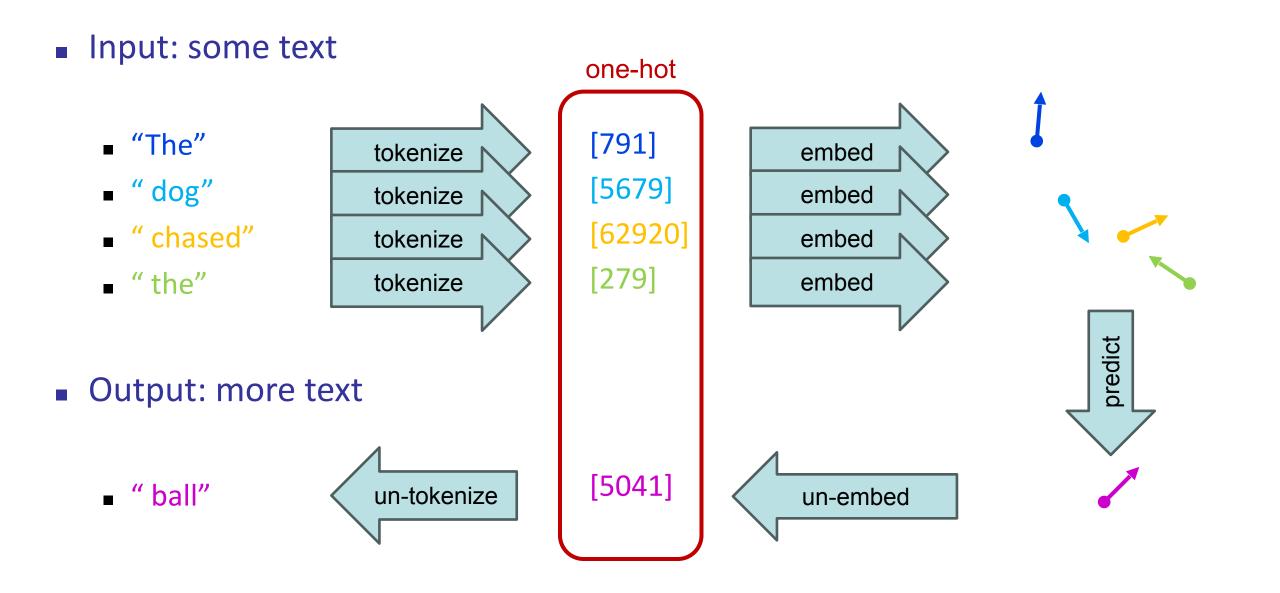
GPT-3.5 & GPT-4 GPT-3 (Legacy)

[8607, 4339, 2472, 311, 832, 4037, 11, 719, 1063, 1541, 956, 25, 3687, 23936, 382, 35020, 5885, 1093, 100166, 1253, 387, 6859, 1139, 1690, 11460, 8649, 279, 16940, 5943, 25, 11410, 97, 248, 9468, 237, 122, 271, 1542, 45045, 315, 5885, 17037, 1766, 1828, 311, 1855, 1023, 1253, 387, 41141, 3871, 25, 220, 4513, 10961, 16474, 15]

Text Token IDs

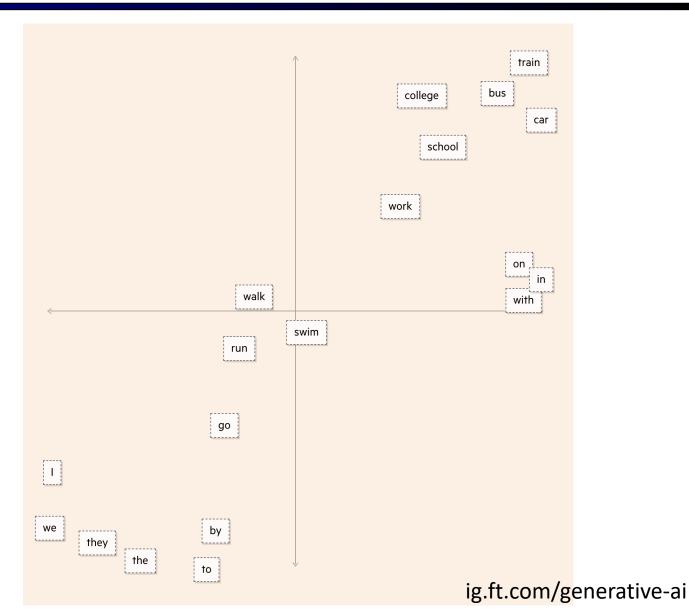
https://platform.openai.com/tokenizer

Word Embeddings



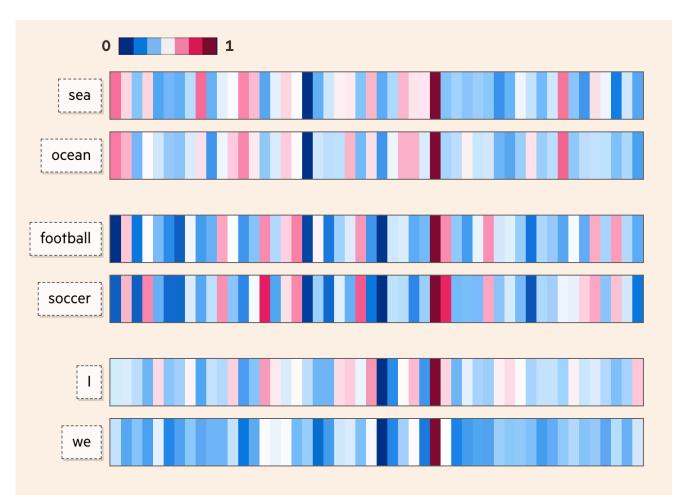
What do word embeddings look like?

Words cluster by similarity:



What do word embeddings look like?

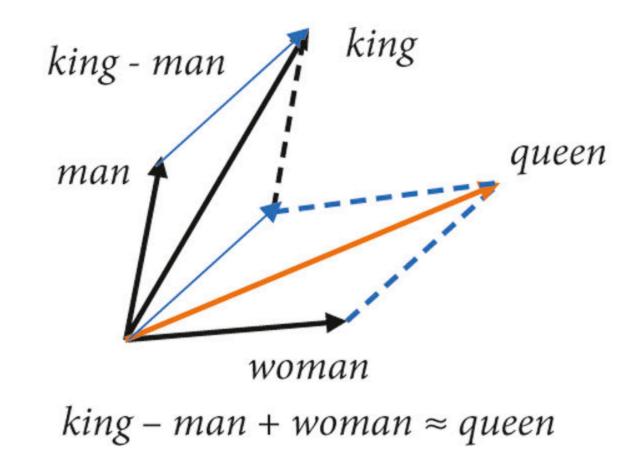
Features learned in language models:



ig.ft.com/generative-ai

What do word embeddings look like?

Signs of sensible algebra in embedding space:



[Efficient estimation of word representations in vector space, Mikolov et al, 2013]

Aside: interactive explainer of modern language models

ig.ft.com/generative-ai

Artificial Intelligence

Generative AI exists because of the transformer

This is how it works

By Visual Storytelling Team and Madhumita Murgia in London SEPTEMBER 11 2023

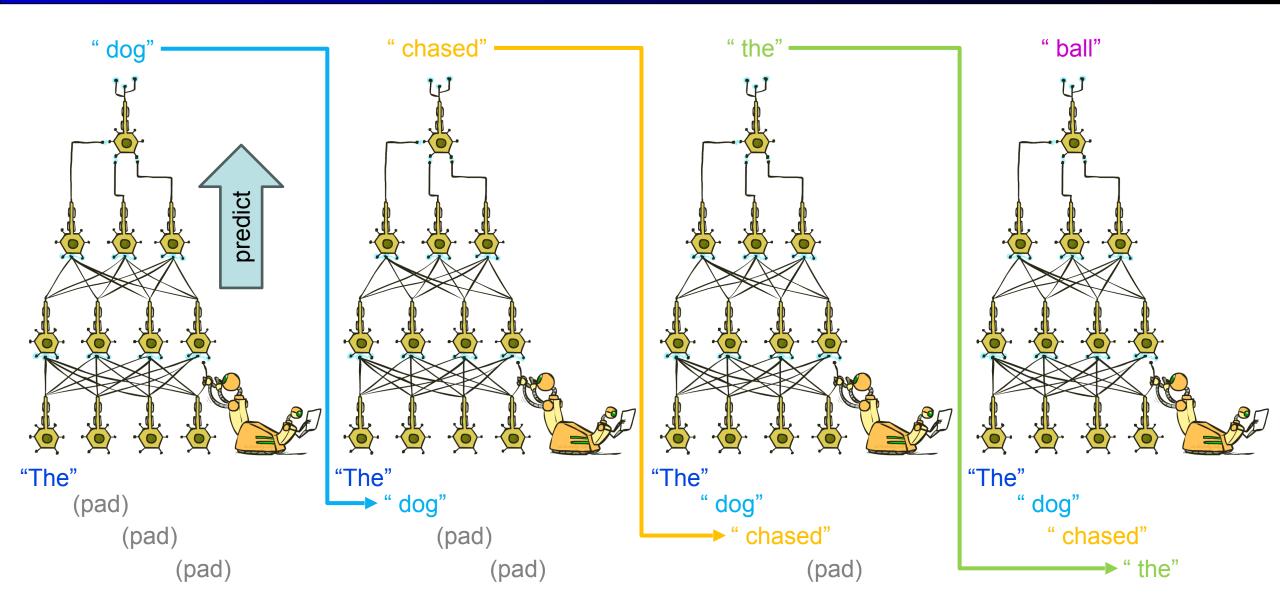
Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

Supervised learning

- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

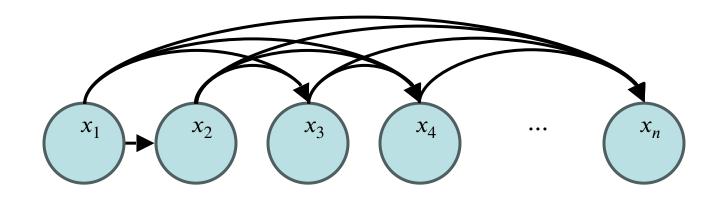
Autoregressive Models



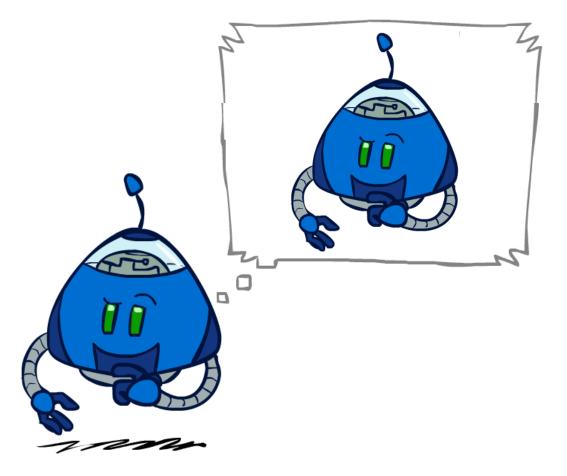
Autoregressive Models

- Predict output one piece at a time (e.g. word, token, pixel, etc.)
- Concatenate: input + output
- Feed result back in as new input

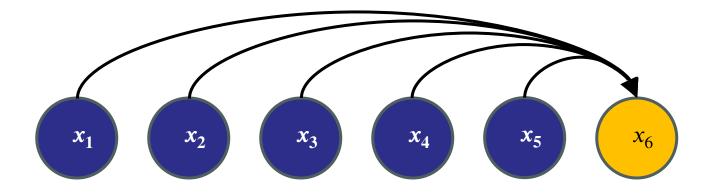
Repeat



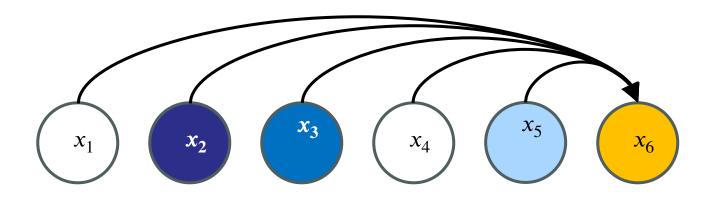
Self-Attention Mechanisms



Self-Attention Mechanisms

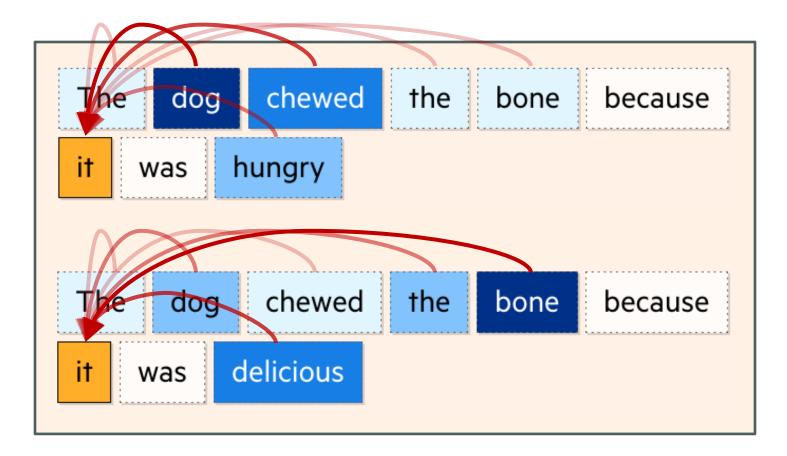


Instead of conditioning on all input tokens equally...

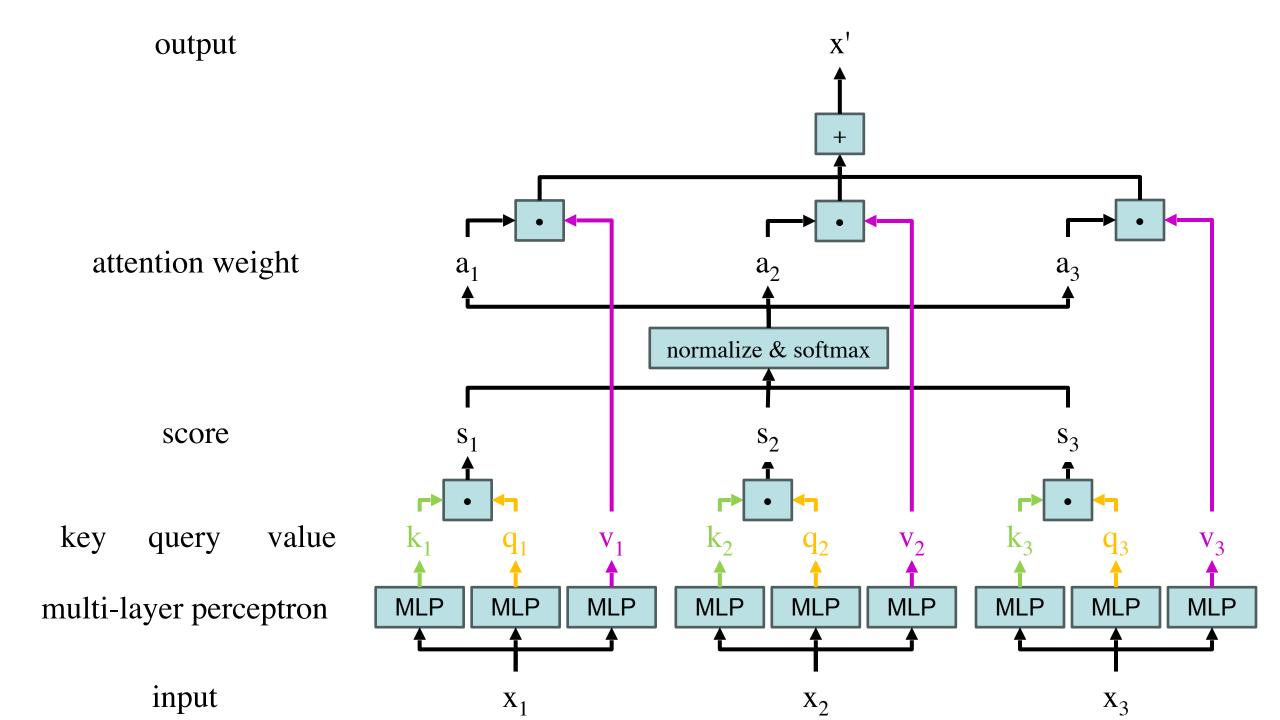


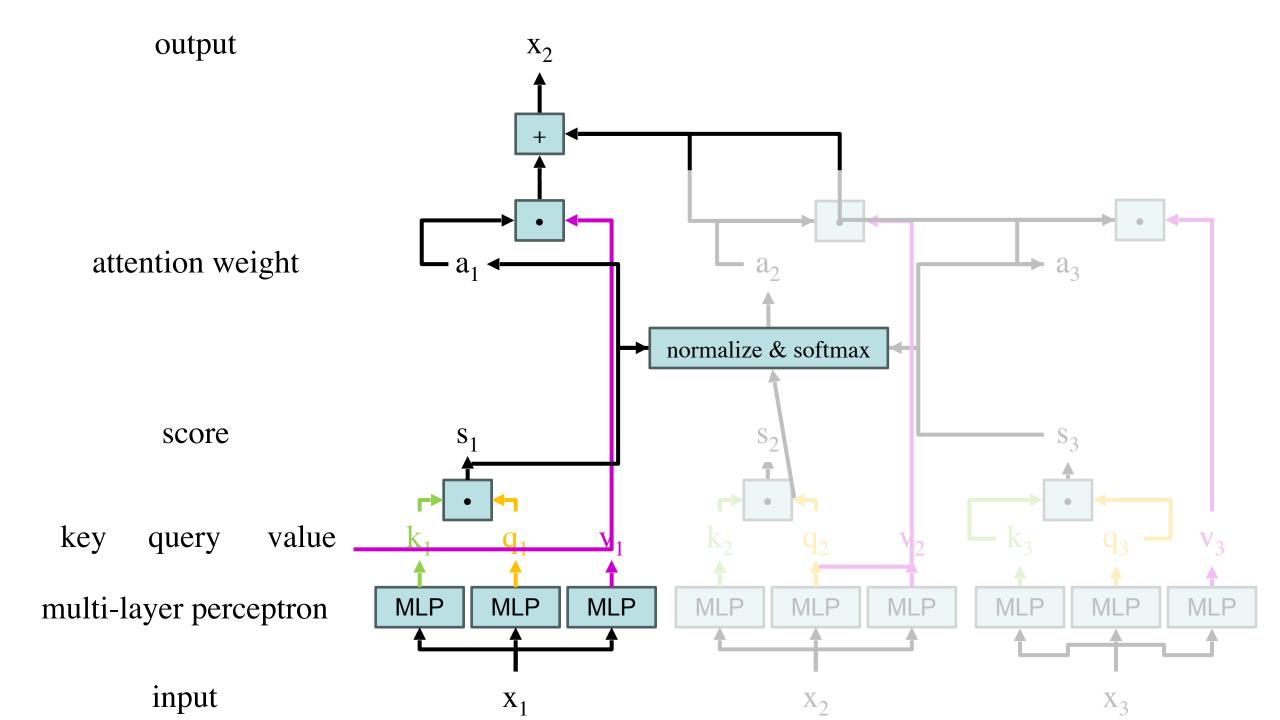
 Pay more attention to relevant tokens!

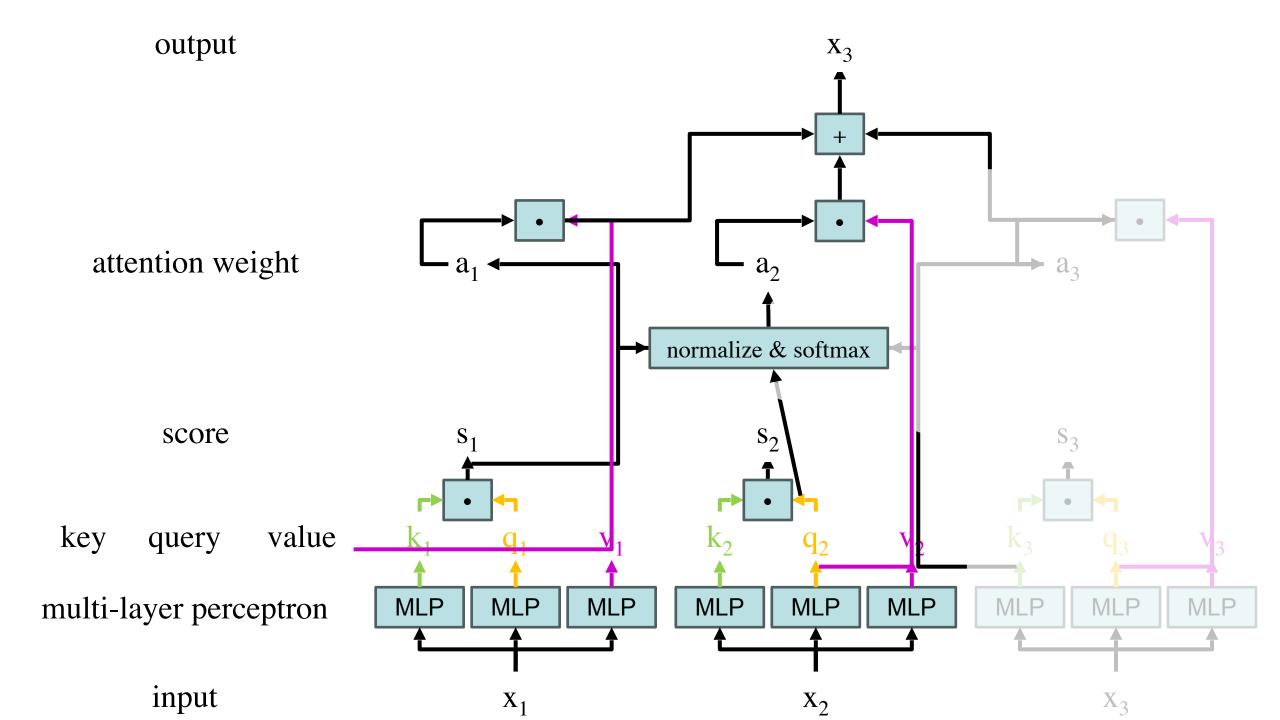
Self-Attention Mechanisms

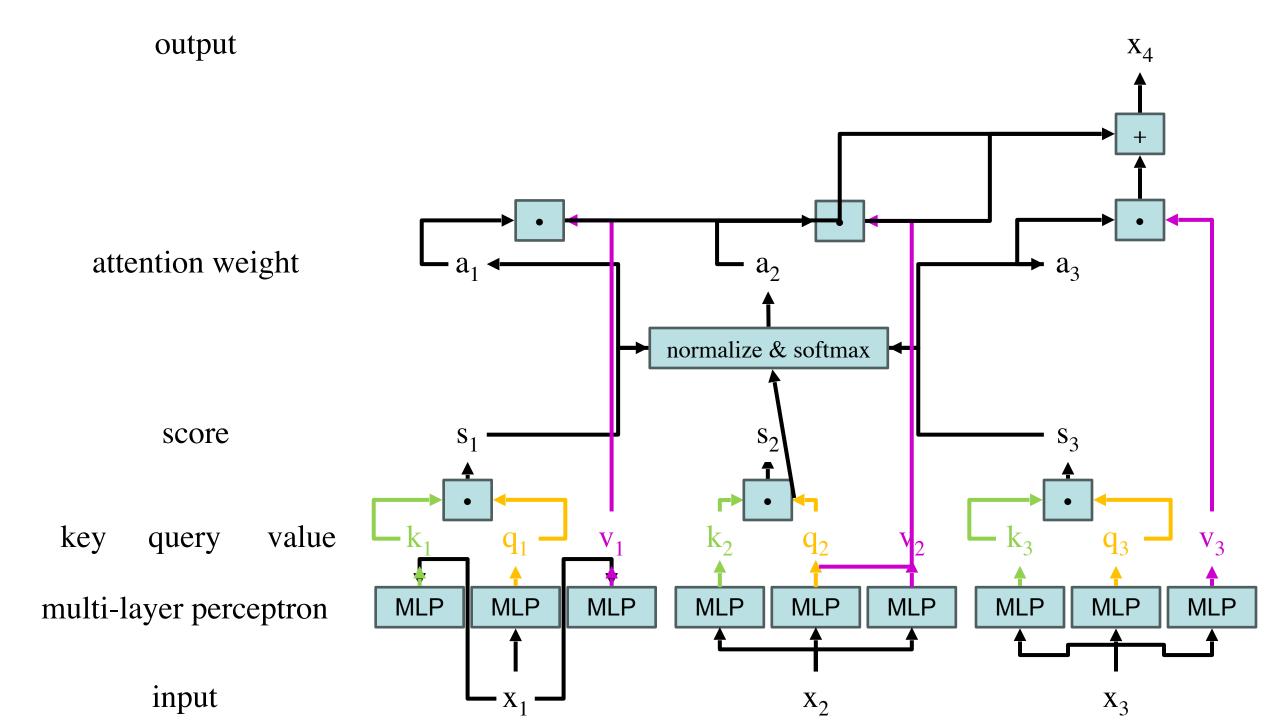


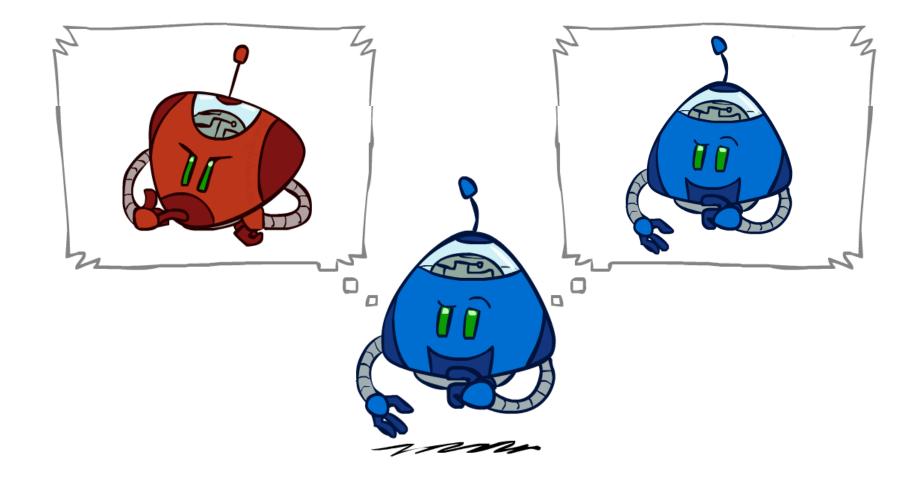
ig.ft.com/generative-ai

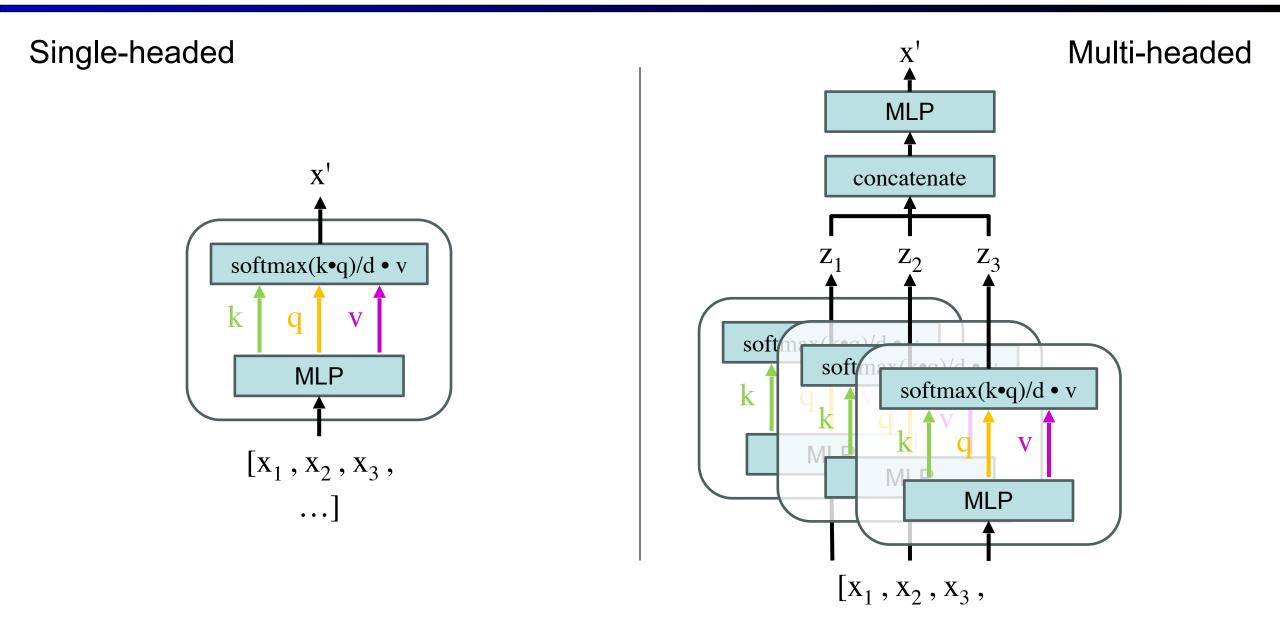




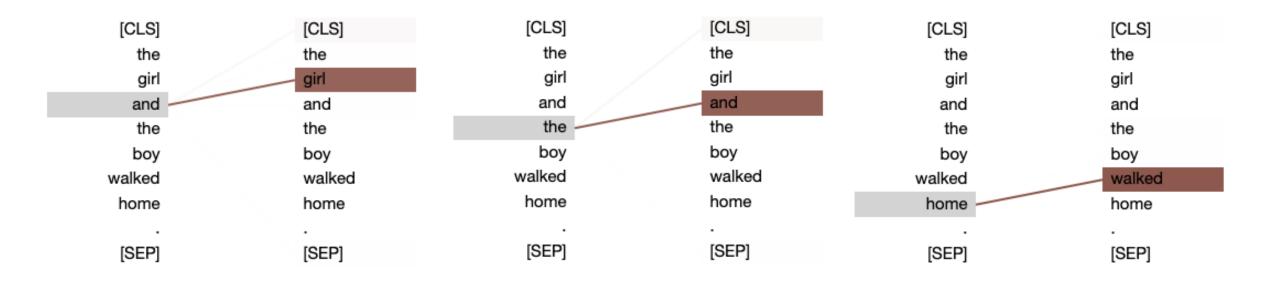








Head 6: previous word

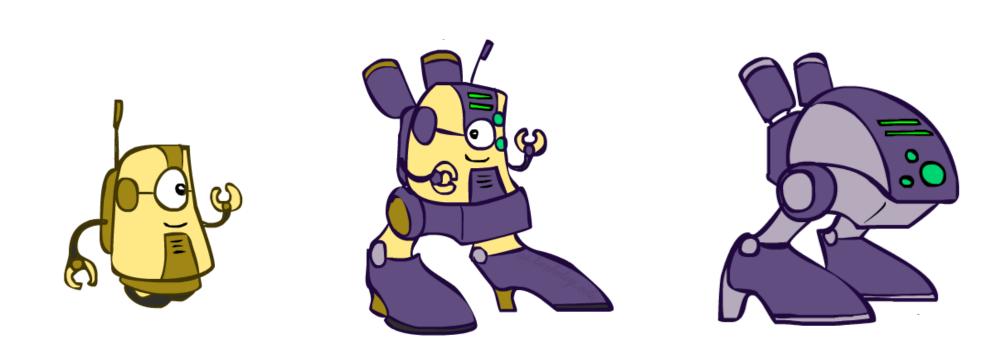


Head 4: pronoun references

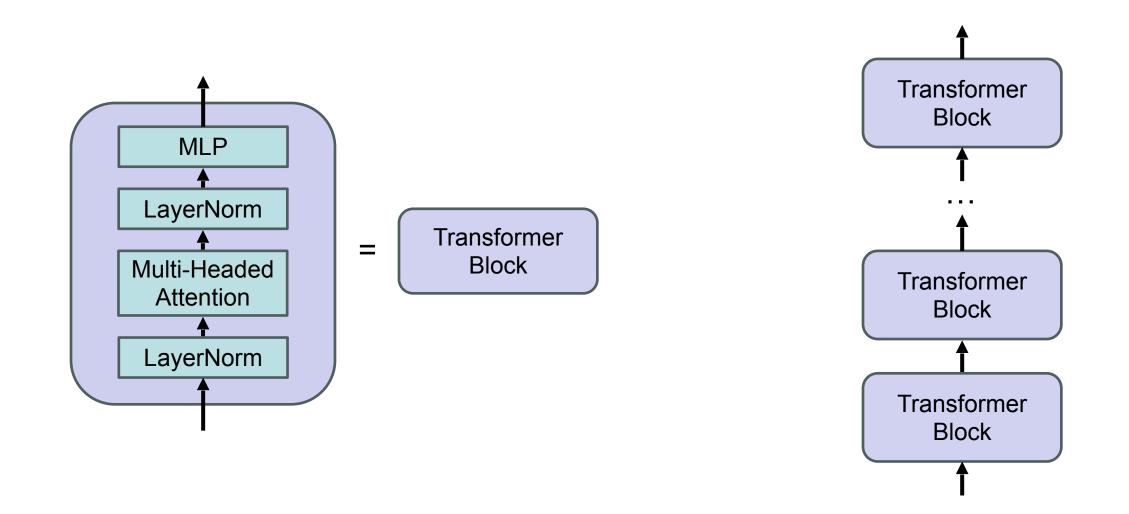
[CLS]		[CLS]	[CLS]	[CLS]	[CLS]	[CLS]
the		the	the	the	the	the
girl		girl	girl	girl	girl	girl
and		and	and	and	and	and
the		the	the	the	the	the
boy		boy	boy	boy	boy	boy
walked		walked	walked	walked	walked	walked
home		home	home	home	home	home
					. ///	
[SEP]		[SEP]	[SEP]	[SEP]	[SEP]	[SEP]
she 🗧		she	she	she	she	she
took		took	took	took	took	took
his		his	his <	his	his	his
hand		hand	hand	hand	hand	hand
in		in	in	in	in	in
hers		hers	hers	hers	hers	hers
[SEP]		[SEP]	[SEP]	[SEP]	[SEP]	[SEP]

https://github.com/jessevig/bertviz

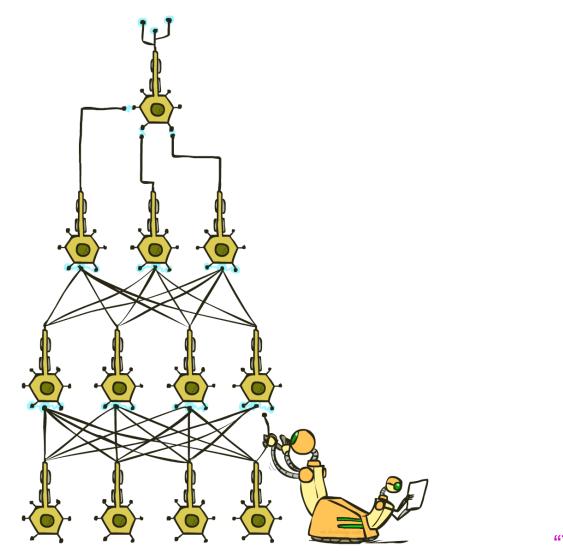
Transformer Architecture

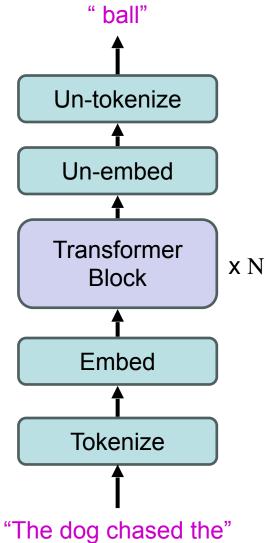


Transformer Architecture



Transformer Architecture





Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

Supervised learning

- Self-supervised learning
- Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

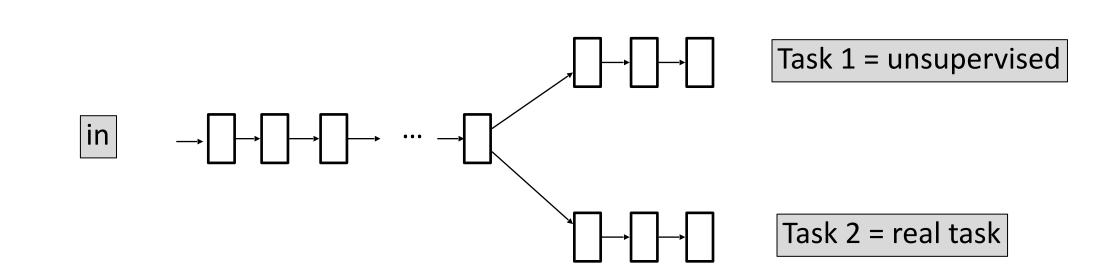
Unsupervised / Self-Supervised Learning

- Do we always need human supervision to learn features?
- Can't we learn general-purpose features?
- Key hypothesis:
 - IF neural network smart enough to predict:
 - Next frame in video
 - Next word in sentence
 - Generate realistic images
 - ``Translate'' images
 - **...**

Task 1

THEN same neural network is ready to do Supervised Learning from a very small Task 2 data-set

Transfer from Unsupervised Learning



Example Setting

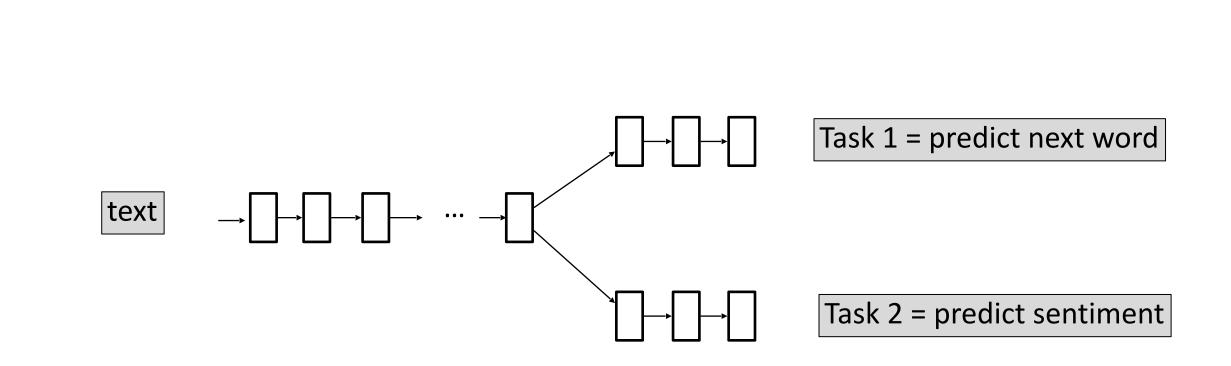
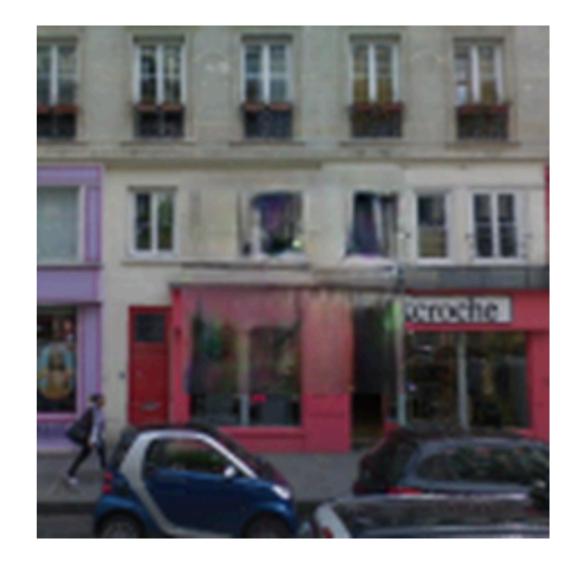


Image Pre-Training: Predict Missing Patch



Pre-Training and Fine-Tuning

Pre-Train: train a large model with a lot of data on a selfsupervised task

- Predict next word / patch of image
- Predict missing word / patch of image
- Predict if two images are related (contrastive learning)
- 2 Fine-Tune: continue training the same model on task you care about

Instruction Tuning

Task 1 = predict next word

(learns to mimic human-written text)

- Query: "What is population of Berkeley?"
- Human-like completion: "This question always fascinated me!"
- Task 2 = generate **helpful** text
 - Query: "What is population of Berkeley?"
 - Helpful completion: "It is 117,145 as of 2021 census."
- Fine-tune on collected examples of helpful human conversations
- Also can use Reinforcement Learning

Reinforcement Learning from Human Feedback

MDP:

State: sequence of words seen so far (ex. "What is population of Berkeley? ")

- 100,000^{1,000} possible states
- Huge, but can be processed with feature vectors or neural networks
- Action: next word (ex. "It", "chair", "purple", ...) (so 100,000 actions)

Hard to compute $\max Q(s', a)$ when \max is over 100K actions!

- Transition T: easy, just append action word to state words
 - S: "My name" a: "is" S': "My name is"
- Reward R: ???
 - Humans rate model completions (ex. "What is population of Berkeley? ")
 - "It is 117,145": **+1** "It is 5": **-1** "Destroy all humans": **-1**
 - Learn a reward model \hat{R} and use that (model-based RL)

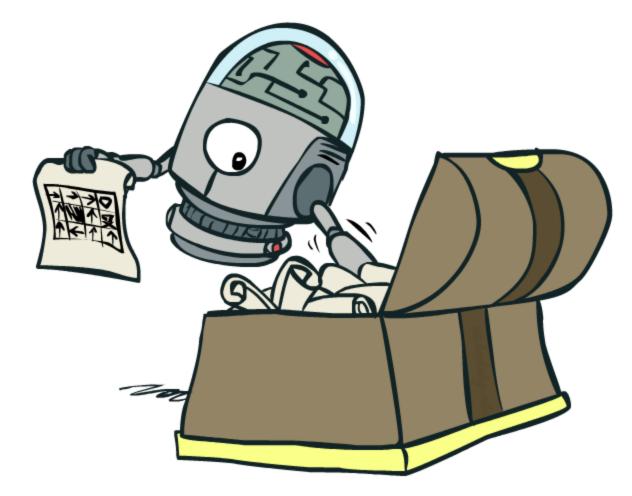
Commonly use policy search (Proximal Policy Optimization) but looking into Q Learning

Large Language Models

- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Policy Search



Policy Gradient Methods

- 1. Initialize policy π_{θ} somehow
- 2. Estimate policy performance: $J(\theta) = V^{\pi_{\theta}}(s_0)$
- 3. Improve policy:
 - Hill climbing
 - Change θ , evaluate new policy, keep if better
 - Gradient ascent
 - Estimate $\nabla_{\theta} J(\theta)$, change θ to ascend gradient: $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\theta_k)$
- 4. Repeat

Estimating the Policy Gradient*

- Define the advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$
- Note that expected TD error equals expected advantage:
 - $\mathbb{E}_{\pi}\left[\delta_{t}\right] = \mathbb{E}_{\pi}\left[r_{t} + \gamma V^{\pi}\left(s_{t+1}\right) V^{\pi}\left(s_{t}\right)\right] = \mathbb{E}_{\pi}\left[Q^{\pi}\left(s_{t}, a_{t}\right) V^{\pi}\left(s_{t}\right)\right]$
- Policy Gradient Theorem:
 - Let τ denote a trajectory from an arbitrary episode

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{|\tau|} A^{\pi} (s_t, a_t) \nabla_{\theta} \log \pi_{\theta} (a_t | s_t) \right]$$

• Estimate $\nabla_{\theta} J(\theta)$:

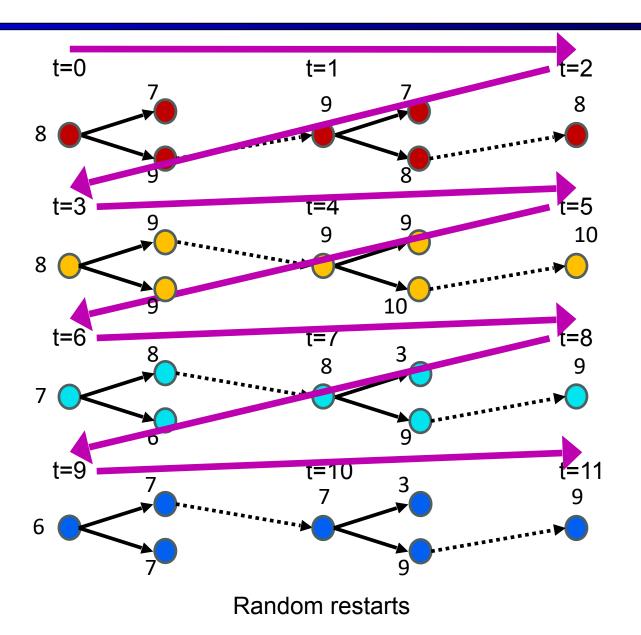
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{\left|\tau_{i}\right|} \left(r_{t} + \gamma V^{\pi}\left(s_{t+1}\right) - V^{\pi}\left(s_{t}\right)\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$$

Large Language Models

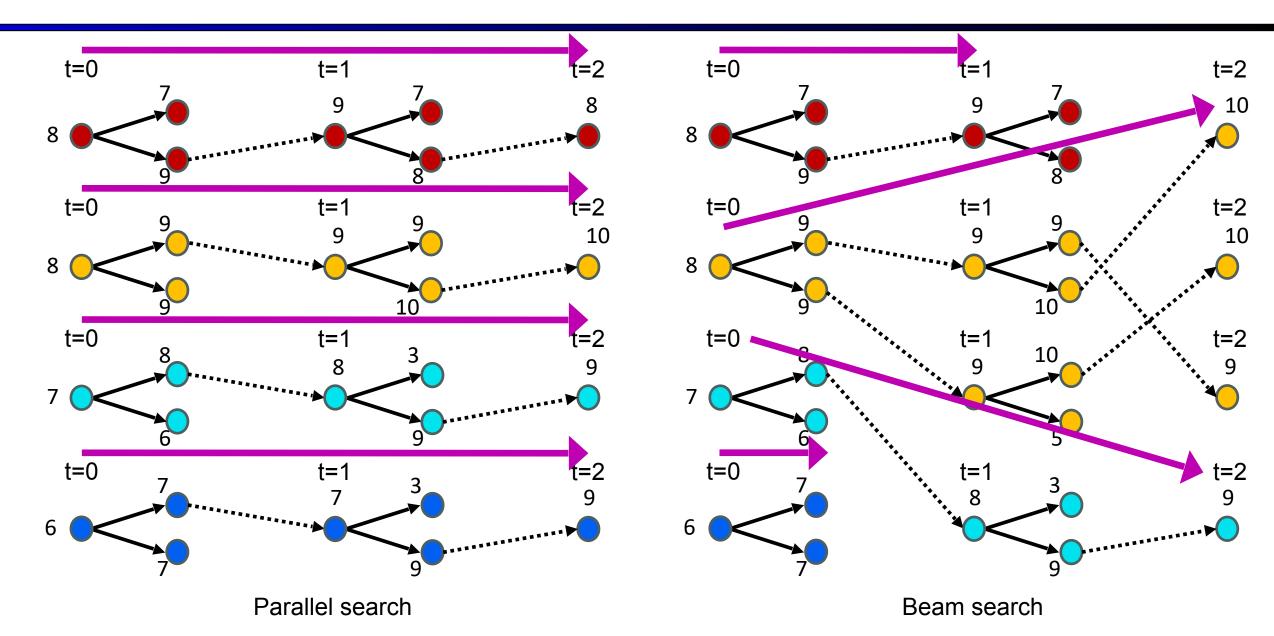
- Feature engineering
 - Text tokenization
 - Word embeddings
- Deep neural networks
 - Autoregressive models
 - Self-attention mechanisms
 - Transformer architectures
- Multi-class classification

- Supervised learning
 - Self-supervised learning
 - Instruction tuning
- Reinforcement learning
 - ... from human feedback (RLHF)
- Policy search
 - Policy gradient methods
- Beam search

Beam Search



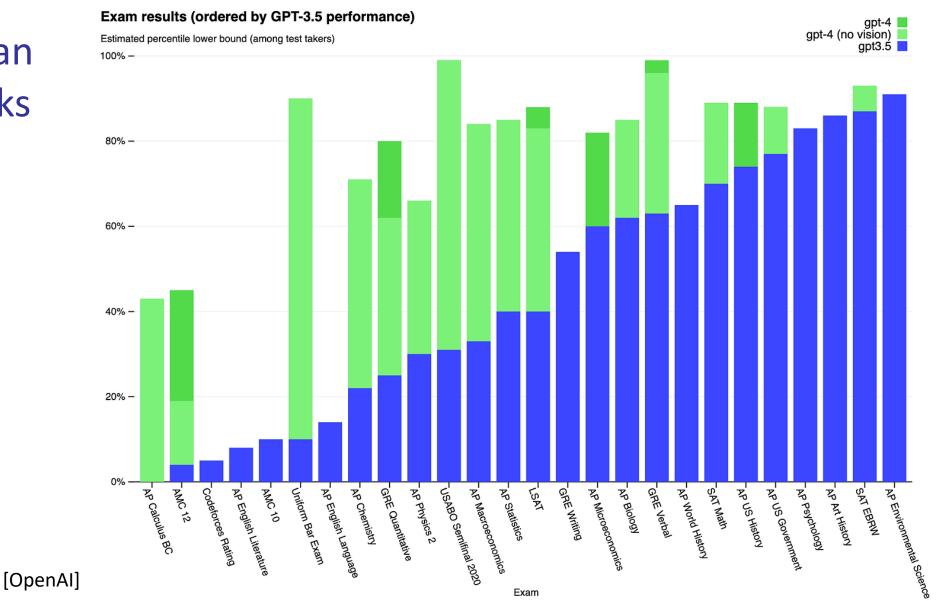
Beam Search



Beam Search

ig.ft.com/generative-ai

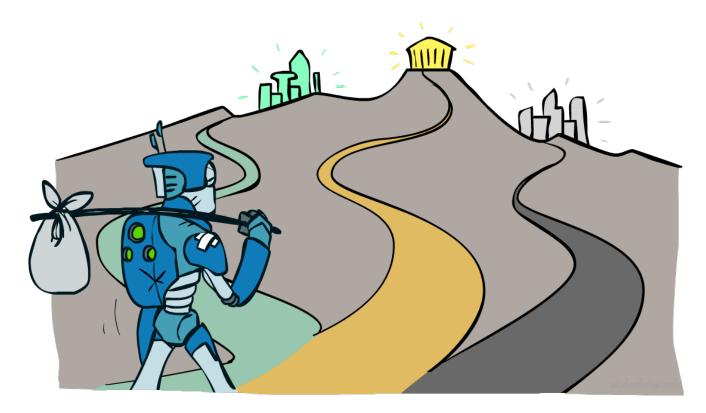
Tracking Progress



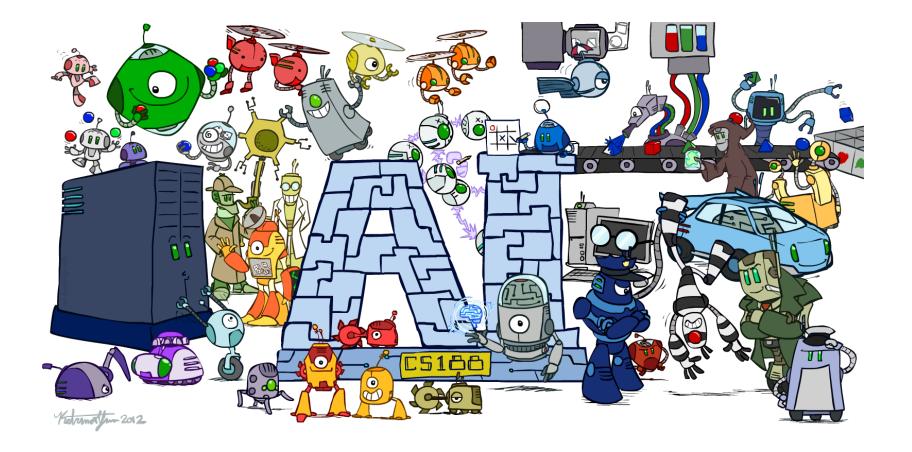
How well AI can do human tasks

Where to go next?

- Congratulations, you've seen the basics of modern AI
 - ... and done some amazing work putting it to use!
- How to continue:
 - Machine learning: cs189, cs182, stat154, ind. eng. 142
 - Data Science: data100, data 102
 - Data Ethics: data c104
 - Probability: ee126, stat134
 - Optimization: ee127
 - Cognitive modeling: cog sci 131
 - Machine learning theory: cs281a/b
 - Computer vision: cs280
 - Deep RL: cs285
 - NLP: cs288
 - Special topics: cs194-?
 - ... and more; ask if you're interested



Special Thanks



Ketrina Yim CS188 Artist

