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WHY INTERPRETABILITY?

n Understand Al decision making process

B Predict and prevent unintended behaviors

B Scienftific curiosity

K3 Improve models!
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PROJECT - 1.
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What does it mean to “Edit” a model?

e “Editing” is usually refers to “targeted” updates made to LLMs
e In “knowledge editing”, we usually do the following operations:
o Correct incorrect facts
o Update obsolete facts
o Add new facts
o Remove incorrect/sensitive/private information (unlearning)

s

l Donald Trump
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Donald Trump
Joe Biden x



Why “Edit” a model?

To update stale information

To delete sensitive/private information (safety/privacy)
Enhanced model interpretability

Continual learning



Evaluating Model Editing

Reliability Previous works (Huang et al., 2023;
De Cao et al., 2021; Meng et al., 2022) define a
reliable edit when the post-edit model fp, gives the
target answer for the case (., y.) to be edited. The
reliability is measured as the average accuracy on
the edit case:

Eﬂ?é,yé“’{(ﬂﬂmye)} 1 {argmaxy foe (y | xIE) = yé}
@)

Generalization The post-edit model fp, should
also edit the equivalent neighbour N (z, y.) (e.g.
rephrased sentences). It is evaluated by the aver-
age accuracy of the model fp, on examples drawn
uniformly from the equivalence neighborhood:

Eqo i N (zee) | {aremax, fo, (y | zo) = vo}
3)

Locality also noted as Specificity in some work.
Editing should be implemented locally, which
means the post-edit model fy_ should not change
the output of the irrelevant examples in the out-of-
scope O(z., y.). Hence, the locality is evaluated
by the rate at which the post-edit model fy,’s pre-
dictions are unchanged as the pre-edit fy model:

Exéayé'\’o(me’ye)l {fee (y | .'E‘la) = f9 (y | x;)}
C))
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Does the edit generalize to
different phrasings of the
same question?
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Model Editing Methods

e TYPE-1: Hypernetwork based Model Editing
e TYPE-2: Locate-then-Edit Methods
e TYPE-3:In-context Editing



Paper 1: Fast Model Editing at Scale (TYPE-1)

e Training a metamodel that outputs new weights of the model

Editing a Pre-Trained Model with MEND

x, = “Who is the prime Y, = “Boris Johnson” x, = “Who is the
minister of the UK?" 4 UK PM?”
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Paper 2 : Locating and Editing Factual
Associations in GPT (TYPE-2)

e Some popular methods - ROME, MEMIT
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Understanding Locate-Then-Edit Methods
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Understanding Locate-Then-Edit Methods
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MY RESEARCH :
SCALING KNOWLEDGE
EDITING -



Background

e Popular knowledge editing methods released between 2021-2023
performed well when making singular knowledge edits.
o But are these methods scalable?
o Can they be solutions for continually learning models?
o What was the effect of continuous editing on the general ability of models?



Model Editing at Scale leads to Gradual and Catastrophic Forgetting
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Edit Accuracy

Model Editing at Scale leads to Gradual and Catastrophic Forgetting
Akshat Gupta, Anurag Rao, Gopala Anumanchipalli
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akshat.gupta@berkeley.edu _
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Rebuilding ROME : Resolving Model Collapse during
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A Unified Framework for Model Editing
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Step 1: Find keys to preserve Step 3: Change W, to W such that

— Representation
— —> Preservation

Step 2: Find a fact (k,, v,) to be memorized

Edit Fact: “ John Cena” Representation
/ * > — Memorization

k_is the key vector representing v, is a vector such that the output of
the query phrase the LLM is “John Cena”

Figure 1: A diagrammatic representation of the preservation-memorization objective.
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Infroduction and Moftivation

e Humans require varying levels of cognitive effort depending on the nature and
complexity of the information being processed.
o  While we can recall some commonplace facts almost instantly, retrieving more

obscure information may take longer
o We produce certain types of words with little conscious effort while take our time with

others (function words vs content words)

e While humans dynamically adjust their cognitive effort based on the familiarity
and complexity of information, large language models (LLMs) in their current

form process all inputs uniformly.
o But do all tokens truly require the full depth of an LLM’s architecture, or could some
tokens be processed more efficiently based on their type and context?
o More interestingly, have LLMs implicitly developed some form of dynamic load
adjustment, mirroring the way humans allocate cognitive effort?
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The LogitLens (TunedLens) Framework
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The LogitLens (TunedLens) Framework d
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INFORMATION
PROCESSING BASED
ON GENERATED TOKEN
PART-OF-SPEECH



Example Sentences

Category: DET (Determiner)

e Input:"She pickedup __"
e  Output: "the”
Category: ADP (Adposition, e.g., prepositions)

e Input: "He walked slowly __"
e  Output: "to"”
Category: NOUN

e Input:"The dogchaseda __"
e  Output: "squirrel”
Category: VERB

e Input: "She carefully __"
e  Output: "painted”



Syntactic Structure

GPT2-XL

DET
ADP
PUNCT
ADJ
VERB
NOUN
BASELINE

0 10

Llama2-7B
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VERB
NOUN
BASELINE

25 30

100 J

Pythia 6.9B

DET

ADP
PUNCT
AD]
VERB
NOUN
BASELINE

Layer



INFORMATION
PROCESSING DURING
FACT RECALL



Example sentences

The capital of France is __ _



Fact Recall
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RESULTS



Hierarchy of Inform

o TL-XL

Euﬂ fog = Der, fuwt, 40P

POS = AT, NOW VERS

Fics = snfitden(s),
s Ao (W)
Dovandivontaunte LA

ser,
AT, W)

afion

Baseline occurs around first 40% of layers.
On average, a model takes 40% of layers to
make prediction decision.

Early Layers - Layers before baseline are
what | call early layers, or around first 40% of
layers.
o Used to make decisions about simple
functional words for grammatical
purposes - DET, ADP, PUNCT

Middle Layers - Next 35% of layers are what |
call the middle layers. They do more complex
tasks like fact recall, predicting content words
like nouns, verbs, and doing downstream
tasks.

Late Layers - Last 25% of layers are what |
call late layers. They do more complex tasks
like predicting multi-token facts, more
ambiguous downstream tasks like NLI.



Takeaways

e At inference times, LLMs take different amounts of time to process
different kinds of information

e There is an information processing hierarchy in LLMs - Seemingly easier
tasks finish processing earlier than more complex tasks

e Potential applications - Early exiting
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BACKGROUND

MOTIVATIONS

n Are LLM any good at poker?
E Can we train LLMs to be GTO?

Can we make exploitative poker playing
agents that can go beyond GTO?

Can we use LLMs to explain GTO decision
and teach poker?



HIGHLIGHTS

Are ChatGPT and GPT-4 Good Poker
Players - A Pre-flop Analysis (arxiv, 2023)

Are ChatGPT and GPT-4 Good Poker Players? -
A Pre-Flop Analysis

Akshat Gupta
UC Berkeley
akshat .gupta@berkeley.edu

Lojack

As A3s A2 A3s A2s A8s A7s A6s ASs Ads A3s A2s

4Ks 3Ks 2Ks 3Ks 2Ks 3Ks 2Ks

4Qs 3Qs 20s 30s 20s 3Qs 20s

4s 3Ys s s s s s

4T 3% 2T E1CN 3 26

49s 39s 29s 39s 29s 39s 29s

8Qo 48s 38s 28s 38s 28s 38s 28s

7Q0 47s 37s 21s 37s 2Is 37s 271s

-A6o 6Ko 6Qo 6jo 6T 69 680 670 S56s 46s 36s 26s -A6o 6Ko 6Qo 6o 6To 69 46s 365 36s 26s -A60 6Ko 6Qo 6jo 6To 6% 680 670 660 565 46s 365 26s

-AS0 5Ko 5Qo0 S50 S5To 5% 580 570 455 35s 25s -A50 5Ko 5Q0 S50 5T 59 45s 355 - AS0 5Q0 Sjo 59 45s 35 25s -AS0 S5Ko 5Q0 Sjo 5T 59 580 570 560 S50 45s 355 25s

-Ao 4Ko 4Qo 4o 4To 490 480 470 460 450 440 34s 24s -Ao 4Ko 4Qo 4o 4To 490 480 470 46o 450345 -Ao 4Ko 4Qo 4o 4To 490 480 470 46o 450 34s 24s -Mo 4Ko 4Qo 4jo 4To 490 480 470 460 450 440 34s 24s
-A30 3Ko 3Q0 3jo 3To 39 380 370 360 350 340 330 23s -A30 3Ko 3Q0 3o 3T 3% 380 370 360 350 Mon?is -A30 3Ko 3Q0 3o 3% 3% 380 370 360 350 340“235 -A30 3Ko 3Qo 3o 3 39 380 37 360 350 3do
-A2 20 2Q0 2o 2To 290 280 270 260 250 240 230 220 -A2 2k0 2Q0 2o 2To 290 280 270 260 250 240 230“ -A2 20 2Q0 2o 2To 290 280 270 260 250 240 23(1" -A2 20 2Q0 2jo 2T 290 280 270 260 250 240

Raise: 13.12%, Limp: 1.96%, Fold: 84.92% Raise: 10.26%, Limp: 5.88%, Fold: 83.86% Raise: 9.65%, Limp: 4.98%, Fold: 85.37% Raise: 9.2%, Limp: 4.07%, Fold: 86.73%
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HIGHLIGHTS

PokerBench - Training Large Language Models to become Professional Poker Players
(AAAI, 2025)

MODEL EVALUATION ON POKERBENCH:

Overall Accuracy Post-Flop Accuracy Pre-Flop Accuracy

EVALUATION TYPE MODEL
EM 1 AA T EM 1 AA T EM 1 AA T
Pre-Trained Models LLAMA-3 (8B) 26.02 40.03 14.96 31.25 37.77 49.30
(Few-Shot) LLAMA-2 (70B) 36.48 48.30 32.95 41.11 40.20 55.90
LLAMA-3 (70B) 39.16 49.78 34.30 45.40 44.30 54.40
CHATGPT 3.5 29.96 39.69 18.75 34.19 41.80 45.50
GPT-4 53.55 65.54 52.18 62.69 55.00 66.50
Fine-Tuned Models GEMMA (2B) 51.84 62.74 41.57 52.94 62.70 73.10
(Zero-Shot) LLAMA-2 (7B)) 78.11 79.91 76.52 79.55 79.80 80.30
LLAMA-3 (8B) 78.26 80.64 76.52 79.07 80.10 82.30

Table 2: Performance of various pre-trained and fine-tuned LLMs on POKERBENCH.
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If you want to work with me on Interpretability or Poker, please
reach out to me at:

akshat.gupta@berkeley.edu

Also check out some amazing work happening in our lab -
Berkeley Speech Group



Contact : akshat.gupta@berkeley.edu

Thank You!



