



# AI Interpretability AKSHAT GUPTA

**GUEST LECTURE, CS 188 UC Berkeley** 

April 29, 2025

### AKSHAT GUPTA



#### PHD STUDENT, UC BERKELEY (2023 - PRESENT)

- AI RESEARCH ENGINEER, JPMorgan Chase, NY (2021-2023)
- MS ECE, Carnegie Mellon University (2020-2021)
- MS PHYSICS, Technical University of Munich (2017-2019)
- BTECH EE, Indian Institute of Technology Mandi (2013-2017)

ADVISOR: Gopala Anumanchipalli AFFILIATIONS : Berkeley Speech Group, BAIR

<u>Research Areas</u>: Interpretability, Knowledge Editing, Reasoning and Poker

Dario Amodei



### The Urgency of Interpretability

April 2025

1 Understand AI decision making process

1 Understand AI decision making process

2 Predict and prevent unintended behaviors

1 Understand AI decision making process

2 Predict and prevent unintended behaviors

**3** Scientific curiosity

1 Understand AI decision making process

2 Predict and prevent unintended behaviors

**3** Scientific curiosity

4 Improve models!













**Pick the Largest Dot Product** 



# PROJECT - 1: KNOWLEDGE EDITING

### What does it mean to "Edit" a model?

- "Editing" is usually refers to "targeted" updates made to LLMs
- In "knowledge editing", we usually do the following operations:
  - Correct incorrect facts
  - Update obsolete facts
  - Add new facts
  - Remove incorrect/sensitive/private information (unlearning)



### Why "Edit" a model?

- To update stale information
- To delete sensitive/private information (safety/privacy)
- Enhanced model interpretability
- Continual learning

**Reliability** Previous works (Huang et al., 2023; De Cao et al., 2021; Meng et al., 2022) define a reliable edit when the post-edit model  $f_{\theta_e}$  gives the target answer for the case  $(x_e, y_e)$  to be edited. The reliability is measured as the average accuracy on the edit case:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim \{(x_{e}, y_{e})\}} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(2)

**Generalization** The post-edit model  $f_{\theta_e}$  should also edit the equivalent neighbour  $N(x_e, y_e)$  (e.g. rephrased sentences). It is evaluated by the average accuracy of the model  $f_{\theta_e}$  on examples drawn uniformly from the equivalence neighborhood:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim N(x_{e}, y_{e})} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(3)

**Locality** also noted as **Specificity** in some work. Editing should be implemented locally, which means the post-edit model  $f_{\theta_e}$  should not change the output of the irrelevant examples in the out-ofscope  $O(x_e, y_e)$ . Hence, the locality is evaluated by the rate at which the post-edit model  $f_{\theta_e}$ 's predictions are unchanged as the pre-edit  $f_{\theta}$  model:

$$\mathbb{E}_{x_{\mathrm{e}}', y_{\mathrm{e}}' \sim O(x_{\mathrm{e}}, y_{\mathrm{e}})} \mathbb{1} \left\{ f_{\theta_{e}} \left( y \mid x_{\mathrm{e}}' \right) = f_{\theta} \left( y \mid x_{\mathrm{e}}' \right) \right\}$$

$$\tag{4}$$

**Reliability** Previous works (Huang et al., 2023; De Cao et al., 2021; Meng et al., 2022) define a reliable edit when the post-edit model  $f_{\theta_e}$  gives the target answer for the case  $(x_e, y_e)$  to be edited. The reliability is measured as the average accuracy on the edit case:

$$\mathbb{E}_{x'_{\mathrm{e}}, y'_{\mathrm{e}} \sim \{(x_{\mathrm{e}}, y_{\mathrm{e}})\}} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{\mathrm{e}} \right) = y'_{\mathrm{e}} \right\}$$
(2)

**Generalization** The post-edit model  $f_{\theta_e}$  should also edit the equivalent neighbour  $N(x_e, y_e)$  (e.g. rephrased sentences). It is evaluated by the average accuracy of the model  $f_{\theta_e}$  on examples drawn uniformly from the equivalence neighborhood:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim N(x_{e}, y_{e})} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(3)

**Locality** also noted as **Specificity** in some work. Editing should be implemented locally, which means the post-edit model  $f_{\theta_e}$  should not change the output of the irrelevant examples in the out-ofscope  $O(x_e, y_e)$ . Hence, the locality is evaluated by the rate at which the post-edit model  $f_{\theta_e}$ 's predictions are unchanged as the pre-edit  $f_{\theta}$  model:

$$\mathbb{E}_{x_{\mathrm{e}}', y_{\mathrm{e}}' \sim O(x_{\mathrm{e}}, y_{\mathrm{e}})} \mathbb{1} \left\{ f_{\theta_{e}} \left( y \mid x_{\mathrm{e}}' \right) = f_{\theta} \left( y \mid x_{\mathrm{e}}' \right) \right\}$$

$$\tag{4}$$

Was the edit successful?

**Reliability** Previous works (Huang et al., 2023; De Cao et al., 2021; Meng et al., 2022) define a reliable edit when the post-edit model  $f_{\theta_e}$  gives the target answer for the case  $(x_e, y_e)$  to be edited. The reliability is measured as the average accuracy on the edit case:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim \{(x_{e}, y_{e})\}} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(2)

**Generalization** The post-edit model  $f_{\theta_e}$  should also edit the equivalent neighbour  $N(x_e, y_e)$  (e.g. rephrased sentences). It is evaluated by the average accuracy of the model  $f_{\theta_e}$  on examples drawn uniformly from the equivalence neighborhood:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim N(x_{e}, y_{e})} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(3)

**Locality** also noted as **Specificity** in some work. Editing should be implemented locally, which means the post-edit model  $f_{\theta_e}$  should not change the output of the irrelevant examples in the out-ofscope  $O(x_e, y_e)$ . Hence, the locality is evaluated by the rate at which the post-edit model  $f_{\theta_e}$ 's predictions are unchanged as the pre-edit  $f_{\theta}$  model:

$$\mathbb{E}_{x_{\mathrm{e}}', y_{\mathrm{e}}' \sim O(x_{\mathrm{e}}, y_{\mathrm{e}})} \mathbb{1} \left\{ f_{\theta_{e}} \left( y \mid x_{\mathrm{e}}' \right) = f_{\theta} \left( y \mid x_{\mathrm{e}}' \right) \right\}$$

$$\tag{4}$$

Does the edit generalize to different phrasings of the same question?

**Reliability** Previous works (Huang et al., 2023; De Cao et al., 2021; Meng et al., 2022) define a reliable edit when the post-edit model  $f_{\theta_e}$  gives the target answer for the case  $(x_e, y_e)$  to be edited. The reliability is measured as the average accuracy on the edit case:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim \{(x_{e}, y_{e})\}} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(2)

**Generalization** The post-edit model  $f_{\theta_e}$  should also edit the equivalent neighbour  $N(x_e, y_e)$  (e.g. rephrased sentences). It is evaluated by the average accuracy of the model  $f_{\theta_e}$  on examples drawn uniformly from the equivalence neighborhood:

$$\mathbb{E}_{x'_{e}, y'_{e} \sim N(x_{e}, y_{e})} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left( y \mid x'_{e} \right) = y'_{e} \right\}$$
(3)

**Locality** also noted as **Specificity** in some work. Editing should be implemented locally, which means the post-edit model  $f_{\theta_e}$  should not change the output of the irrelevant examples in the out-ofscope  $O(x_e, y_e)$ . Hence, the locality is evaluated by the rate at which the post-edit model  $f_{\theta_e}$ 's predictions are unchanged as the pre-edit  $f_{\theta}$  model:

$$\mathbb{E}_{x'_{e},y'_{e}\sim O(x_{e},y_{e})} \mathbb{1} \{ f_{\theta_{e}} (y \mid x'_{e}) = f_{\theta} (y \mid x'_{e}) \}$$
(4)  
Does the edit effect  
other facts stored in the  
model?

# KNOWLEDGE EDITING : METHODS

# Model Editing Methods

- TYPE-1: Hypernetwork based Model Editing
- TYPE-2 : Locate-then-Edit Methods
- TYPE-3 : In-context Editing

### Paper 1 : Fast Model Editing at Scale (TYPE-1)

• Training a metamodel that outputs new weights of the model



#### Editing a Pre-Trained Model with MEND

# Paper 2 : Locating and Editing Factual Associations in GPT (TYPE-2)

• Some popular methods - ROME, MEMIT





finds the target activations for the MLP matrix.

(a) Gradient descent step which (b) Target activations are used to update the second MLP matrix (in red).

Figure 2. Presenting locate-then-edit knowledge editing methods as a two-step fine-tuning process.

"Lifelong Sequential Editing without Model Degradation", Gupta et al 2025

Facts type (s, r, o)  $\rightarrow$  (Malaysia, capital, Singapore)

#### Editing Address:

- 1. Layer that we want to modify
- 2. Token representation we use to modify knowledge

Facts type (s, r, o)  $\rightarrow$  (Malaysia, capital, Singapore)

#### Editing Address:

- 1. Layer that we want to modify
- 2. Token representation we use to modify knowledge



Facts type (s, r, o)  $\rightarrow$  (Malaysia, capital, Singapore)

#### Editing Address:

- 1. Layer that we want to modify
- 2. Token representation we use to modify knowledge







(a) Gradient descent step which finds the target activations for the MLP matrix.

(b) Target activations are used to update the second MLP matrix (in red).

*Figure 2.* Presenting locate-then-edit knowledge editing methods as a two-step fine-tuning process.

*"Lifelong Sequential Editing without Model Degradation"*, Gupta et al 2025



(a) Gradient descent step which finds the target activations for the MLP matrix.

(b) Target activations are used to update the second MLP matrix (in red).

*Figure 2.* Presenting locate-then-edit knowledge editing methods as a two-step fine-tuning process.



*"Lifelong Sequential Editing without Model Degradation"*, Gupta et al 2025

### MY RESEARCH : SCALING KNOWLEDGE EDITING

# Background

- Popular knowledge editing methods released between 2021-2023 performed well when making singular knowledge edits.
  - But are these methods scalable?
  - Can they be solutions for continually learning models?
  - What was the effect of continuous editing on the general ability of models?
### Model Editing at Scale leads to Gradual and Catastrophic Forgetting

Akshat Gupta, Anurag Rao, Gopala Anumanchipalli

UC Berkeley akshat.gupta@berkeley.edu

### ACL 2024 (Findings)



AKSHAT GUPTA PhD Student, UC Berkeley



ANURAG RAO UC Berkeley (Now MS, Oxford)



GOPALA ANUMANCHIPALLI Asst. Professor, UC Berkeley

## Model Editing at Scale leads to Gradual and Catastrophic Forgetting

Akshat Gupta, Anurag Rao, Gopala Anumanchipalli

UC Berkeley akshat.gupta@berkeley.edu

ACL 2024 (Findings)





(a) Sample 1



Facts Forgotten

100

80

60

40

Facts Forgotten



**Downstream Performance** 

### **Rebuilding ROME : Resolving Model Collapse during** Sequential Model Editing

Akshat Gupta<sup>1</sup>, Sidharth Baskaran<sup>2</sup>, Gopala Anumanchipalli<sup>1</sup> <sup>1</sup>UC Berkeley, <sup>2</sup>Automorphic Inc. akshat.gupta@berkeley.edu, sid@automorphic.ai

#### EMNLP 2024 Main



AKSHAT GUPTA PhD Student, UC Berkeley



SIDHARTH BASKARAN Automorphic Inc.



GOPALA ANUMANCHIPALLI Asst. Professor, UC Berkeley

### **Rebuilding ROME : Resolving Model Collapse during** Sequential Model Editing

Akshat Gupta<sup>1</sup>, Sidharth Baskaran<sup>2</sup>, Gopala Anumanchipalli<sup>1</sup>

<sup>1</sup>UC Berkeley, <sup>2</sup>Automorphic Inc. akshat.gupta@berkeley.edu, sid@automorphic.ai

### EMNLP 2024 Main



#### AFTER

| DATASET | Implementation     | Effi             | Efficacy         |                       | lization              | Loca                 | ality                                       | Fluency            | Score                  |
|---------|--------------------|------------------|------------------|-----------------------|-----------------------|----------------------|---------------------------------------------|--------------------|------------------------|
|         |                    | ES ↑             | EM ↑             | PS ↑                  | $\mathbf{PM}\uparrow$ | NS $\uparrow$        | $NM\uparrow$                                | GE ↑               | $\mathbf{S}\uparrow$   |
| CF      | Original<br>r-ROME | $99.92 \\ 99.74$ | $99.68 \\ 97.79$ | 96.29<br><b>99.09</b> | $71.58 \\ 70.86$      | 75.8<br><b>80.62</b> | $\begin{array}{c} 10.25\\ 26.0 \end{array}$ | $621.96 \\ 621.67$ | 89.32<br><b>92</b> .22 |
|         | p-ROME             | 99.9             | 99.36            | 97.04                 | 63.01                 | 80.0                 | 5.74                                        | 621.17             | 91.42                  |

## **A Unified Framework for Model Editing**

Akshat Gupta, Dev Sajnani, Gopala Anumanchipalli UC Berkeley {akshat.gupta, sajnanidev, gopala}@berkeley.edu

### EMNLP 2024 (Findings)



AKSHAT GUPTA PhD Student, UC Berkeley



**DEV SAJNANI** Undergrad, UC Berkeley



GOPALA ANUMANCHIPALLI Asst. Professor, UC Berkeley

## **A Unified Framework for Model Editing**

Akshat Gupta, Dev Sajnani, Gopala Anumanchipalli UC Berkeley {akshat.gupta, sajnanidev, gopala}@berkeley.edu



Figure 1: A diagrammatic representation of the preservation-memorization objective.



## EMMET - Equality-constraint Mass Model Editing Algorithm



(a) Efficacy Score (ES)



EMNLP 2024 (Findings)

Figure 13: Model - Llama2-7b. Batch size 4096.

### Norm Growth and Stability Challenges in Localized Sequential Knowledge Editing

Akshat Gupta<sup>1\*</sup>, Christine Fang<sup>1</sup>, Atahan Ozdemir<sup>1</sup>, Maochuan Lu<sup>1</sup>, Ahmed Alaa<sup>1</sup>, Thomas Hartvigsen<sup>2</sup>, Gopala Anumanchipalli<sup>1</sup>

<sup>1</sup>University of California Berkeley, <sup>2</sup>University of Virginia

### **Outstanding Paper Award**, Towards Knowledgeable Foundation Models Workshop @ AAAI 2025



## Norm Growth and Stability Challenges in Localized Sequential Knowledge Editing

### Akshat Gupta<sup>1\*</sup>, Christine Fang<sup>1</sup>, Atahan Ozdemir<sup>1</sup>, Maochuan Lu<sup>1</sup>, Ahmed Alaa<sup>1</sup>, Thomas Hartvigsen<sup>2</sup>, Gopala Anumanchipalli<sup>1</sup>

<sup>1</sup>University of California Berkeley, <sup>2</sup>University of Virginia

### **Outstanding Paper Award**, Towards Knowledgeable Foundation Models Workshop @ AAAI 2025





*Figure 1.* The continuous growth of norm of edited MLP matrices in LLama3-8B during sequential knowledge editing, as a function of number edits.

*Figure 4.* Comparison between norm of edited MLP matrices and norm of unedited matrices after 5,000 and 10,000 sequential edits.

# PROJECT-2: INFORMATION **PROCESSING IN MS**





AKSHAT GUPTA PhD Student, UC Berkeley



**JAY YEUNG** Undergrad, UC Berkeley



ANNA IVANOVA Asst. Professor, Georgia Tech



GOPALA ANUMANCHIPALLI Asst. Professor, UC Berkeley

## Introduction and Motivation

- Humans require varying levels of cognitive effort depending on the nature and complexity of the information being processed.
  - While we can recall some commonplace facts almost instantly, retrieving more obscure information may take longer
  - We produce certain types of words with little conscious effort while take our time with others (function words vs content words)
- While humans dynamically adjust their cognitive effort based on the familiarity and complexity of information, large language models (LLMs) in their current form process all inputs uniformly.
  - But do all tokens truly require the full depth of an LLM's architecture, or could some tokens be processed more efficiently based on their type and context?
  - More interestingly, have LLMs implicitly developed some form of dynamic load adjustment, mirroring the way humans allocate cognitive effort?

# BACKGROUND: LOGITLENS

## Computations in an LLM



## Computations in an LLM





$$f^l = \operatorname{LN1}(h^{l-1}) \tag{3}$$

$$a^l = \operatorname{Att}(f^l)$$
 (4)

$$g^{l} = \text{LN2}(h^{l-1} + a^{l}) \tag{5}$$

$$m^{l} = W^{l}_{proj}\sigma(W^{l}_{fc}g^{l} + b^{l}_{fc}) + b_{proj}$$
(6)

 $h^{l} = h^{l-1} + a^{l} + m^{l} (7)$ 

## The LogitLens (TunedLens) Framework

$$h^l = h^{l-1} + a^l + m^l$$

$$\texttt{LogitLens}(h^l) = W_U \Big[\texttt{Norm}_f[h^l] \Big]$$

## The LogitLens (TunedLens) Framework

$$h^l = h^{l-1} + a^l + m^l$$

$$\texttt{LogitLens}(h^l) = W_U \Big[ \texttt{Norm}_f[h^l] \Big]$$



|           | in'i         |             | Hain         | Ġ             | 5          |           | à       | , si i    | . 21     | aut          |
|-----------|--------------|-------------|--------------|---------------|------------|-----------|---------|-----------|----------|--------------|
| h_out -   | 2            | 'we'        | 'show'       | 'a'           | 'AN'       | ' models' | 'based' | - V       | ' a'     | ' N'         |
| h46_out - | 19 - N       | ' we'       | ' show'      | ' a'          | 'AN'       | - Q       | T.      | - 9       | ' a'     | ' N'         |
| h44_out - |              | 'we'        | ' show'      | ' a'          | 'BM'       | ' models' | 'based' | ' models' | ' a'     | ' N'         |
| h42_out - |              | ' we'       | ' show'      | ' a'          | 'rams'     | ' models' | 'based' | ' models' | ' a'     | ' algorithm' |
| h40_out - | - 92<br>- 92 | ' we'       | demonstrate  | ' a'          | ' machine' | ' models' | 'based' | ' models' | ' a'     | ' algorithm' |
| h38_out - | ' we'        | ' we'       | demonstrate  | ' 'neural'    | 'rap'      | ' models' | 'based' | ' models' | ' a'     | ' algorithm' |
| h36_out - | 'we'         | 'we'        | demonstrate  | ' 'neural'    |            | ' models' | 'based' | ' models' | ' a'     | ' algorithm' |
| h34_out - | 'we'         | ' we'       | demonstrate  | ' models'     |            | ' model'  | 'based' | ' models' | ' a'     | ' algorith'  |
| h32_out - | 'we'         | 'we'        | ' simulated' | ' models'     |            | ' model'  | 'based' | ' models' | ' a'     | ' adaptive'  |
| h30_out - | ' targeted'  | 'we'        | ' found'     | ' a'          | 'rap'      |           | 'based' | en.       | ' which' | ' hybrid'    |
| h28_out - | ' targeted'  | ' we'       | ' found'     | ' a'          | 'FP'       |           | 'based' | 'rd'      |          |              |
| h26_out - | ' targeted'  | ' we'       | ' found'     | ' naīve'      | 'FP'       |           | 'based' | 'rd'      |          |              |
| h24_out - | ' targeted'  | ' we'       | ' found'     | ' algorithms' |            |           | 'based' | 'rd'      |          | ' widely'    |
| h22_out - | ' targeted'  | ' we'       | ' found'     | ' camp'       |            |           | 'based' | 'rd'      |          | ' widely'    |
| h20_out - |              | ' although' | ' found'     | ' algorithm'  |            |           | 'based' | 'rd'      |          | ' single'    |
| h18_out - |              | ' although' | ' focus'     | ' camp'       |            |           | 'based' | 'rd'      |          | ' single'    |
| h16_out - |              | ' unlike'   | ' focus'     | ' camp'       | 'MP'       | "IME"     | 'based' | 'rd'      |          | ' single'    |
| h14_out - | ' targeted'  | ' note'     | ' target'    | ' camp'       | 'MS'       |           | 'based' | 'rd'      | '000'    | ' single'    |
| h12_out - | ' target'    | ' unlike'   | ' hope'      | ' split'      | 'MP'       |           | 'based' | 'rd'      | '000'    | ' massive'   |
| h10_out - | ' updated'   | ' however'  |              |               | 'iott'     |           | 'style' | 'rd'      | '000'    | ' massive'   |
| h8_out -  | ' target'    | ' however'  | ' target'    | ' evaluation' | 'rom'      |           | 'based' | 'rd'      | '000'    | ' enormous   |
| h6_out -  | ' focused'   | ' however'  |              | 'ees'         |            |           | 'based' | 'rd'      | ' which' | ' enormous   |
| h4_out -  | ' target'    | ' however'  |              |               |            |           | 'sided' | 'rd'      | ' and'   | ' enormous   |
| h2_out -  | ' guid'      | ' and'      | ' Hardy'     |               |            |           | 'based' | 'rd'      | ' and'   | ' enormous   |
| h0_out -  | 'chini'      | ' and'      |              | ' train'      |            |           | 'based' | 'rd'      | ' and'   | ' isolated'  |
|           | ically       | 1           | . We         | train         | Ğ          | d.        | 3       | ŝ         | 4        | 36           |

|            |           |           |            | ive         | è           | is,          |                |            |            | ameters       |              |
|------------|-----------|-----------|------------|-------------|-------------|--------------|----------------|------------|------------|---------------|--------------|
| . BUE      |           | ore       | (*). Ole   | , langu     | (*) m       | With , with  | , 175          | billion    | (m) . 62   | en'i          | . 1º         |
| ' N'       | h_out     | 'oen'     | 'gressive' | ' model'    | ' model'    | ' trained'   | ' a'           |            | parameters | 9             | 'on'         |
| ' N°       | h46_out - | 'oen'     | 'gressive' | ' language' | ' model'    | ' trained'   | ' a'           | - 25       | ' word'    | 1.2           | ' on'        |
| ' N'       | h44_out   | 'oen'     | 'gressive' | ' learning' | ' model'    | ' trained'   | ' a'           | ' million' | ' neurons' | - V - 1       | ' on'        |
| lgorithm'  | h42_out · | 'oen'     | 'gressive' | ' model'    | ' model'    | ' trained'   | ' a'           | ' million' | ' neurons' | 2.2           | ' using'     |
| algorithm' | h40_out   | 'oen'     | 'gressive' | ' model'    | ' model'    | ' trained'   | ' a'           | ' million' | ' neurons' | ' tuned'      | ' using'     |
| lgorithm'  | h38_out - | 'ore'     | 'gressive' | ' modeling' | ' model'    | ' optimized' | ' a'           | ' million' | ' neurons' | - 9<br>2      | ' using'     |
| algorithm' | h36_out   |           | 'vised'    | ' modeling' | ' model'    | ' designed'  | ' three'       | ' million' | ' neurons' | 9 - P         |              |
| algorith'  | h34_out - |           | 'ceptor'   | ' modeling' | ' modeling' | ' designed'  |                | ' million' | ' neurons' | - V           |              |
|            | h32_out   | 'ogenous' | 'ceptor'   | ' model'    | ' model'    | ' designed'  | ' three'       | ' million' |            | ' per'        | ' using'     |
|            | h30_out   |           | 'ceptor'   | ' modeling' | ' modeling' | ' designed'  | ' three'       |            |            | ' per'        | ' sequ'      |
|            | h28_out   | 'ocratic' | 'ceptor'   | ' model'    | ' modeling' | ' capable'   | ' minimal'     |            | ' dollars' | ' per'        | ' followed'  |
|            | h26_out   |           | 'actor'    | ' model'    | ' model'    | ' capable'   | ' three'       |            | ' dollars' | ' per'        | ' followed'  |
| widely'    | h24_out   | 'ocratic' | 'actor'    | ' modeling' | ' model'    | ' capable'   | ' minimal'     |            | ' dollars' | ' per'        | ' followed'  |
| widely'    | h22_out   | 'ocratic' | 'ceptor'   |             | ' model'    | ' housed'    | ' specialized' |            | ' dollars' | ' per'        | ' followed'  |
| ' single'  | h20_out   |           | 'ceptor'   | ' analysis' | ' model'    | ' housed'    | ' specialized' | ' million' | ' dollars' | ' per'        | ' followed'  |
| ' single'  | h18_out   |           |            | ' analysis' | ' feature'  | ' housed'    | ' respect'     | ' million' | ' dollars' | 'ized'        | ' including' |
| ' single'  | h16_out   | 'ode'     | 'vers'     | ' analysis' | ' grid'     | ' split'     | ' specialized' | ' million' | ' dollars' | 'ized'        | ' including' |
| ' single'  | h14_out   | 'ode'     | 'pro'      | ' analysis' | ' grid'     | ' trained'   | ' specialized' | ' million' | ' dollars' | ' per'        | ' including' |
| massive'   | h12_out   | 'ode'     |            | ' analysis' | ' grid'     | ' weights'   | ' respect'     | ' million' | ' dollars' | ' parameters' | ' including' |
| massive'   | h10_out   | 'ode'     | 'oms'      | ' analysis' | ' sear'     | ' machine'   | ' respect'     | ' million' | ' dollars' | ' parameters' | ' including' |
| normous'   | h8_out    | 'ode'     |            | ' analysis' | ' sear'     | ' machine'   | ' respect'     | ' million' | ' dollars' | ' parameters' | ' mostly'    |
| enormous'  | h6_out    |           | 'ographic' | ' analysis' |             | ' whit'      | ' respect'     | ' million' | ' dollars' | ' parameters' | ' followed'  |
| enormous'  | h4_out    |           | 'ras'      | ' analysis' | ' sear'     | ' machine'   | ' respect'     | ' million' | ' dollars' | ' parameters' | ' and'       |
| enormous'  | h2_out    | ' aut'    | 'nce'      | ' movement' | ' skills'   | ' machine'   | ' respect'     | ' shades'  | ' dollars' | ' parameters' | ' and'       |
| isolated'  | h0_out    | ' aut'    | 'ore'      | 'gressive'  | ' words'    | ' model'     | ' regards'     | ' shades'  | ' dollars' | ' parameters' | ' and'       |
| ari        |           | BUT       | ore        | SSINE       | uage        | nodel        | with           | 175        | oillion    | eters         |              |
|            |           |           | .05        | ,130        | ю.,         | ×.           |                |            | . para     |               |              |

## LogitLens:

TunedLens:



## The LogitLens (TunedLens) Framework

$$h^l = h^{l-1} + a^l + m^l$$

$$\texttt{LogitLens}(h^l) = W_U \Big[ \texttt{Norm}_f[h^l] \Big]$$

$$\mathsf{TunedLens}(h^l) = \mathsf{LogitLens}(A_l h^l + b_l)$$



## INFORMATION PROCESSING BASED ON GENERATED TOKEN PART-OF-SPEECH

## **Example Sentences**

#### **Category: DET (Determiner)**

- Input: "She picked up \_\_"
- Output: "the"

#### Category: ADP (Adposition, e.g., prepositions)

- Input: "He walked slowly \_\_"
- Output: "to"

#### Category: NOUN

- Input: "The dog chased a \_\_"
- Output: "squirrel"

#### Category: VERB

- Input: "She carefully \_\_"
- Output: "painted"

## Syntactic Structure



## INFORMATION PROCESSING DURING FACT RECALL

## Example sentences

The capital of France is \_\_\_\_



## REFLECTION ON RESULTS

## **Hierarchy of Information**

GITZ-XL



Baseline occurs around first 40% of layers.On average, a model takes 40% of layers to make prediction decision.

**Early Layers** - Layers before baseline are what I call early layers, or around first 40% of layers.

- Used to make decisions about simple functional words for grammatical purposes - DET, ADP, PUNCT
- Middle Layers Next 35% of layers are what I call the middle layers. They do more complex tasks like fact recall, predicting content words like nouns, verbs, and doing downstream tasks.
- Late Layers Last 25% of layers are what I call late layers. They do more complex tasks like predicting multi-token facts, more ambiguous downstream tasks like NLI.

## Takeaways

- At inference times, LLMs take different amounts of time to process different kinds of information
- There is an information processing hierarchy in LLMs Seemingly easier tasks finish processing earlier than more complex tasks
- Potential applications Early exiting

# PROJECT -3: LLMS AND POKER

## Team



Other Members:

- Piyush Jha (PhD Student, Georgia Tech)
- Jonny Pei (Senior, UC Berkeley)
- Chris Dodla (Sophomore, UC Berkeley)

**Past Members:** 

- Richard Yang (UC Berkeley)
- Aniket Rahane (UC Berkeley)

## MOTIVATIONS

1 Are LLM any good at poker? dh I

2 Can we train LLMs to be GTO?

**3** Can we make exploitative poker playing agents that can go beyond GTO?



**4** Can we use LLMs to explain GTO decision and teach poker?

## Are ChatGPT and GPT-4 Good Poker Players - A Pre-flop Analysis (arxiv, 2023)

dЬ

Are ChatGPT and GPT-4 Good Poker Players? -**A Pre-Flop Analysis** 

**Akshat Gupta** 

UC Berkelev akshat.gupta@berkeley.edu



A9s A8s A7s A6s A5s A4s A3s A2s ATs

UTG+1







HIGHLIGHTS

### POKERBENCH: Training Large Language Models to become Professional Poker Players

### Richard Zhuang<sup>1</sup>, Akshat Gupta<sup>1\*</sup>, Richard Yang<sup>1</sup>, Aniket Rahane<sup>1</sup>, Zhengyu Li<sup>2</sup>, Gopala Anumanchipalli<sup>1</sup>

<sup>1</sup>University of California, Berkeley; <sup>2</sup>Georgia Institute of Technology



## Accepted to AAAI 2025!



HIGHLIGHTS

PokerBench - Training Large Language Models to become Professional Poker Players (AAAI, 2025)

## **MODEL EVALUATION ON POKERBENCH:**

|                    |               | Overall | Overall Accuracy |       | p Accuracy | Pre-Flop Accuracy |       |
|--------------------|---------------|---------|------------------|-------|------------|-------------------|-------|
| EVALUATION TYPE    | MODEL         | EM ↑    | AA ↑             | EM ↑  | AA ↑       | EM ↑              | AA ↑  |
| Pre-Trained Models | LLAMA-3 (8B)  | 26.02   | 40.03            | 14.96 | 31.25      | 37.77             | 49.30 |
| (Few-Shot)         | LLAMA-2 (70B) | 36.48   | 48.30            | 32.95 | 41.11      | 40.20             | 55.90 |
|                    | LLAMA-3 (70B) | 39.16   | 49.78            | 34.30 | 45.40      | 44.30             | 54.40 |
|                    | CHATGPT 3.5   | 29.96   | 39.69            | 18.75 | 34.19      | 41.80             | 45.50 |
|                    | GPT-4         | 53.55   | 65.54            | 52.18 | 62.69      | 55.00             | 66.50 |
| Fine-Tuned Models  | Gemma (2B)    | 51.84   | 62.74            | 41.57 | 52.94      | 62.70             | 73.10 |
| (Zero-Shot)        | LLAMA-2 (7B)) | 78.11   | 79.91            | 76.52 | 79.55      | 79.80             | 80.30 |
|                    | LLAMA-3 (8B)  | 78.26   | 80.64            | 76.52 | 79.07      | 80.10             | 82.30 |

Table 2: Performance of various pre-trained and fine-tuned LLMs on POKERBENCH.

## ACKNOWLEDGEMENTS




## Special Thanks!



If you want to work with me on Interpretability or Poker, please reach out to me at :

## akshat.gupta@berkeley.edu

Also check out some amazing work happening in our lab -Berkeley Speech Group Contact : akshat.gupta@berkeley.edu

## Thank You!