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What does it mean to “Edit” a model?
● “Editing” is usually refers to “targeted” updates made to LLMs
● In “knowledge editing”, we usually do the following operations:

○ Correct incorrect facts
○ Update obsolete facts 
○ Add new facts 
○ Remove incorrect/sensitive/private information (unlearning)



Why “Edit” a model?
● To update stale information
● To delete sensitive/private information (safety/privacy)
● Enhanced model interpretability
● Continual learning
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Does the edit generalize to 
different phrasings of the 
same question?



Evaluating Model Editing

Does the edit effect 
other facts stored in the 
model?
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Model Editing Methods
● TYPE-1 : Hypernetwork based Model Editing
● TYPE-2 : Locate-then-Edit Methods
● TYPE-3 : In-context Editing



Paper 1 : Fast Model Editing at Scale (TYPE-1)

● Training a metamodel that outputs new weights of the model



Paper 2 : Locating and Editing Factual 
Associations in GPT (TYPE-2)
● Some popular methods - ROME, MEMIT



Understanding Locate-Then-Edit Methods

“Lifelong Sequential Editing without Model Degradation”, 
Gupta et al 2025
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Background
● Popular knowledge editing methods released between 2021-2023 

performed well when making singular knowledge edits. 
○ But are these methods scalable?
○ Can they be solutions for continually learning models?
○ What was the effect of continuous editing on the general ability of models?
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ROME:

MEMIT: 

EMMET - Equality-constraint Mass 
Model Editing Algorithm
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Introduction and Motivation
● Humans require varying levels of cognitive effort depending on the nature and 

complexity of the information being processed.
○ While we can recall some commonplace facts almost instantly, retrieving more 

obscure information may take longer
○ We produce certain types of words with little conscious effort while take our time with 

others (function words vs content words)

● While humans dynamically adjust their cognitive effort based on the familiarity 
and complexity of information, large language models (LLMs) in their current 
form process all inputs uniformly.

○ But do all tokens truly require the full depth of an LLM’s architecture, or could some 
tokens be processed more efficiently based on their type and context?

○ More interestingly, have LLMs implicitly developed some form of dynamic load 
adjustment, mirroring the way humans allocate cognitive effort?
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Example Sentences
Category: DET (Determiner)

● Input: "She picked up __"
● Output: "the"

Category: ADP (Adposition, e.g., prepositions)

● Input: "He walked slowly __"
● Output: "to"

Category: NOUN

● Input: "The dog chased a __"
● Output: "squirrel"

Category: VERB

● Input: "She carefully __"
● Output: "painted"



Syntactic Structure
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Example sentences
The capital of France is ___



Fact Recall 

a) GPT-2XL (1.5B)
b) Llama-2 (7B)

c) Pythia (7B)



REFLECTION ON 
RESULTS 2



Hierarchy of Information 
Processing

● Baseline occurs around first 40% of layers. 
On average, a model takes 40% of layers to 
make prediction decision.
 

● Early Layers - Layers before baseline are 
what I call early layers, or around first 40% of 
layers.

○ Used to make decisions about simple 
functional words for grammatical 
purposes - DET, ADP, PUNCT

● Middle Layers - Next 35% of layers are what I 
call the middle layers. They do more complex 
tasks like fact recall, predicting content words 
like nouns, verbs, and doing downstream 
tasks.

● Late Layers - Last 25% of layers are what I 
call late layers. They do more complex tasks 
like predicting multi-token facts, more 
ambiguous downstream tasks like NLI.



Takeaways
● At inference times, LLMs take different amounts of time to process 

different kinds of information
● There is an information processing hierarchy in LLMs - Seemingly easier 

tasks finish processing earlier than more complex tasks
● Potential applications - Early exiting
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BACKGROUND

Can we use LLMs to explain GTO decision 
and teach poker?

Can we make exploitative poker playing 
agents that can go beyond GTO?

Can we train LLMs to be GTO?

Are LLM any good at poker?
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HIGHLIGHTS

Are ChatGPT and GPT-4 Good Poker 
Players - A Pre-flop Analysis (arxiv, 2023)



HIGHLIGHTS

RICHARD ZHUANG
Undergrad (Senior), 

UC Berkeley

Accepted to AAAI 2025!



HIGHLIGHTS

PokerBench - Training Large Language Models to become Professional Poker Players 
(AAAI, 2025)

MODEL EVALUATION ON POKERBENCH:



ACKNOWLEDGEMENTS



DEV SAJNANI
Undergrad, 
UC Berkeley

ANURAG RAO
UC Berkeley

(Now MS, Oxford)

CHRISTINE FENG
Undergrad, 
UC Berkeley

ATAHAN OZDEMIR
Undergrad, 
UC Berkeley

MAOCHUAN LU
Undergrad, 
UC Berkeley

RICHARD ZHUANG
Undergrad (Senior), 

UC Berkeley

JAY YEUNG
Undergrad,
UC Berkeley

GOPALA ANUMANCHIPALLI
Asst. Professor, 

UC Berkeley

AHMED ALAA,
Asst. Professor, 

UC Berkeley

Thomas Hartvigsen,
Asst. Professor, 

University of Virginia

ANNA IVANOVA
Asst. Professor, 
Georgia Tech



MAOCHUAN LU
Undergrad, 
UC Berkeley

Special Thanks!



If you want to work with me on Interpretability or Poker, please 
reach out to me at :  

akshat.gupta@berkeley.edu

Also check out some amazing work happening in our lab - 
Berkeley Speech Group



Thank You!

Contact : akshat.gupta@berkeley.edu


