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Announcements

▪ Final Exam 
▪ Thursday 5/15 from 3:00-6:00pm 
▪ See Exam Logistics on CS 188 website 

▪ Please fill out course evaluations 

▪ Oliver’s RRR office hours will be remote 
▪ Use CS 188 zoom link 
▪ 5/6, 5/8 2:30-4:00 
▪ 5/13 3:30-5:00



CS 188: Artificial Intelligence 
Review: Markov Decision Processes and RL

University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



MDPs/RL vs Human Thought

System II reasoning 
(human)

System I reasoning 
(human)



Markov Decision Processes

▪ An MDP is defined by: 
▪ A set of states s ∈ S 
▪ A set of actions a ∈ A 
▪ A transition function T(s, a, s’) 

▪ Probability that a from s leads to s’, i.e., P(s’| s, a) 
▪ Also called the model or the dynamics 

▪ A reward function R(s, a, s’)  
▪ Sometimes just R(s) or R(s’) 

▪ A start state 
▪ Maybe a terminal state 

▪ MDPs are non-deterministic search problems 
▪ One way to solve them is with expectimax search 
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Grid World Example



Grid World Example



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and 
the past are independent 

▪ For Markov decision processes, “Markov” means action outcomes 
depend only on the current state 

▪ This is just like search, where the successor function could only depend 
on the current state (not the history)

Andrey Markov 
(1856-1922) 



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

▪ In deterministic single-agent search problems, we 
wanted an optimal plan, or sequence of actions, 
from start to a goal 

▪ For MDPs, we want an optimal policy π*: S → A 
▪ A policy π gives an action for each state 
▪ An optimal policy is one that maximizes        expected 

utility if followed 
▪ An explicit policy defines a reflex agent 

▪ Expectimax didn’t compute entire policies 
▪ It computed the action from a single state only



Discounting

▪ It’s reasonable to maximize the sum of rewards 

▪ It’s also reasonable to prefer rewards now to rewards later 

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s: 
V*(s) = expected utility starting in s and 

acting optimally 

▪ The value (utility) of a q-state (s,a): 
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally 

▪ The optimal policy: 
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a  
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero 

▪ Given vector of Vk(s) values, do one ply of expectimax from each state: 

▪ Repeat until convergence

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



k=0

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=1

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=2

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=3

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=4

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=5

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=6

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=7

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=8

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=9

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=10

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=11

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=12

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=100

Noise = 0.2 
Discount = 0.9 
Living reward = 0



The Bellman Equations

How to be optimal: 

    Step 1: Take correct first action 

    Step 2: Keep being optimal



The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a simple 
one-step lookahead relationship amongst optimal utility values 

▪ These are the Bellman equations, and they characterize optimal 
values in a way we’ll use over and over 

	

a

s

s, a

s,a,s’
s’



Value Iteration

▪ Bellman equations characterize the optimal values: 

▪ Value iteration computes them: 

▪ Value iteration is just a fixed point solution method 
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)



Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π? 

▪ Idea 1: Turn recursive Bellman equations into updates 
	 (like value iteration) 

▪ Efficiency: O(S2) per iteration 

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system 
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’



Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s) 

▪ How should we act? 
▪ It’s not obvious! 

▪ We need to do a mini-expectimax (one step) 

▪ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values: 

▪ How should we act? 
▪ Completely trivial to decide! 

▪ Important lesson: actions are easier to select from q-values than values!



Policy Iteration

▪ Alternative approach for optimal values: 
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence 
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values 
▪ Repeat steps until policy converges 

▪ This is policy iteration 
▪ It’s still optimal! 
▪ Can converge (much) faster under some conditions



Example: Policy Iteration
Always Go East Improved Policy using Q-Values Improve again – Optimal!

Q-Values for the above policies



Reinforcement Learning
▪ Still assume a Markov decision process (MDP): 
▪ A set of states s ∈ S 
▪ A set of actions (per state) A 
▪ A model T(s,a,s’) 
▪ A reward function R(s,a,s’) 

▪ Still looking for a policy π(s) 

▪ New twist: don’t know T or R 
▪ I.e. we don’t know which states are good or what the actions do 
▪ Must try out actions and states to learn 

▪ Q1: How to learn from things tried?  (today, Passive Reinforcement Learning) 
▪ Q2: What to decide to try? (Thursday, Active Reinforcement Learning)



Classical Reinforcement Learning Diagram

▪ Basic idea: 
▪ Must (learn to) act so as to maximize expected rewards 
▪ All learning is based on observed samples of outcomes!

Environmen
t 

= MDP

Agent

Actions: a
State: s 

Reward: r



Model-Free Reinforcement Learning



Policy Evaluation: Problem Setting

▪ Simplified task: policy evaluation 
▪ Input: a fixed policy π(s) 
▪ You don’t know the transitions T(s,a,s’) 
▪ You don’t know the rewards R(s,a,s’) 
▪ Goal: learn the state values 

▪ In this case: 
▪ Learner is “along for the ride” 
▪ No choice about what actions to take 
▪ Just execute the policy and learn from experience 
▪ This is NOT offline planning!  You actually take actions in the world.



Problems with Direct Policy Evaluation

▪ What’s good about direct evaluation? 
▪ It eventually computes the correct average values, 

using just sample transitions 

▪ What bad about it? 
▪ It wastes information about state connections 
▪ Each state must be learned separately 
▪ So, it takes a long time to learn

Output Values

 A

 B  C  D

 E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Temporal Difference Learning

▪ Big idea: learn from every experience! 
▪ Update V(s) each time we experience a transition (s, a, s’, r) 
▪ Likely outcomes s’ will contribute updates more often 

▪ Temporal difference learning of values 
▪ Policy still fixed, still doing evaluation! 
▪ Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages 

▪ However, if we want to turn values into an optimal policy, we’re sunk: 

▪ Idea: learn Q-values, not values 

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’



Recall: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values 
▪ Start with V0(s) = 0, which we know is right 
▪ Given Vk, calculate the depth k+1 values for all states: 

▪ But Q-values are more useful, so compute them instead 
▪ Start with Q0(s,a) = 0, which we know is right 
▪ Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

▪ Q-Learning: sample-based Q-value iteration 

▪ Learn Q(s,a) values as you go 
▪ Receive a sample (s,a,s’,r) 
▪ Consider your old estimate: 
▪ Consider your new sample estimate: 

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)] 
[Demo: Q-learning – crawler (L10D3)]



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally! 

▪ This is called off-policy learning 

▪ Caveats: 
▪ You have to explore enough 
▪ You have to eventually make the learning rate 
	 small enough 
▪ … but not decrease it too quickly 
▪ Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration - ε-greedy

▪ Several schemes for forcing exploration 
▪ Simplest: random actions (ε-greedy) 
▪ Every time step, flip a coin 
▪With (small) probability ε, act randomly 
▪With (large) probability 1-ε, act on current policy



Exploration Functions
▪ When to explore? 

▪ Random actions: explore a fixed amount 
▪ Better idea: explore areas whose badness is not 
	 (yet) established, eventually stop exploring 

▪ Exploration function 
▪ Takes a value estimate u and a visit count n, and 
	 returns an optimistic utility, e.g. 

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well! 
	 	 	 	

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Q-Learning with Experience Replay

▪ Problem: 
▪ Need to repeat same (s,a,s’,r) transitions in environment 

many times to propagate values 

▪ Solution: 
▪ Collect transitions in a memory buffer and “replay” them 

to update Q values 
▪ Uses memory of transitions only, no need to repeat them in 

environment 
▪ Evidence of such experience replay in the brain

s,a,s’,r

s,a,s’,r

s,a,s’,r

s,a,s’,r
. . .

Replay Buffer

Update Q

s,a,s’,r



Q-Learning with Experience Replay

▪ At each step: 
▪ Receive a sample transition (s,a,s’,r) 
▪ Add (s,a,s’,r) to replay buffer 
▪ Repeat N times: 

▪ Randomly pick transition (s,a,s’,r) from replay buffer 
▪ Make sample based on (s,a,s’,r): 

▪ Update Q based on picked sample: 

s,a,s’,r

s,a,s’,r

s,a,s’,r

s,a,s’,r
. . .

Update Q

s,a,s’,r

Replay Buffer



Feature-Based Representations

▪ Solution: describe a state using a vector of features 
(properties) f1, f2, … 
▪ Features are functions from states to real numbers (often 

in [0,1]) that capture important properties of the state 
▪ Example features: 

▪ Distance to closest ghost 
▪ Distance to closest dot 
▪ Number of ghosts 
▪ 1 / (dist to dot)2 
▪ Is Pacman in a tunnel? (0/1) 
▪ …… etc. 
▪ Is it the exact state on this slide? 

▪ Can also describe a q-state (s, a) with features (e.g. action 
moves closer to food)



Linear Value Functions

▪ Using a feature representation f1, f2, … we can write a q function (or value function) 
for any state using a few weights w1, w2, … : 

▪ Advantage: our experience is summed up in a few powerful numbers w1, w2, … 

▪ Disadvantage: states may share features but actually be very different in value! 
▪ Ex: these two states would have the same value if we don’t include ghost positions as a feature:



Approximate Q-Learning

▪ Q-learning with linear Q-functions: 

▪ Intuitive interpretation: 
▪ Adjust weights of active features 
▪ E.g., if something unexpectedly bad happens, blame the features that were on: disprefer 

all states with that state’s features 

▪ Formal justification: online least squares, gradient descent

Exact Q’s

Approximate Q’s



Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities) 
aren’t the ones that approximate V / Q best 
▪ Q-learning’s priority: get Q-values close (modeling) 
▪ Action selection priority: get ordering of Q-values right (prediction) 
▪ We’ll see this distinction between modeling and prediction again later in the course 

▪ Solution: learn policies π that maximize rewards, not the Q values that predict them 

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search
▪ Simplest policy search: 

▪ Start with an initial linear value function or Q-function 
▪ Nudge each feature weight up and down and see if your policy is better than before 

▪ Problems: 
▪ How do we tell the policy got better? 
▪ Need to run many sample episodes! 
▪ If there are a lot of features, this can be impractical 

▪ Better methods exploit lookahead structure, sample wisely, change multiple 
parameters… 
▪ Policy Gradient, Proximal Policy Optimization (PPO) are examples



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal	 	 	 	 Technique 

Compute V*, Q*, π*	 	 Value / policy iteration 

Evaluate a fixed policy π Policy evaluation 

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal	 	 	 Technique 

Compute V*, Q*, π*	 VI/PI on approx. MDP 

Evaluate a fixed policy π PE on approx. MDP 

Goal	 	 	 Technique 

Compute V*, Q*, π*	 Q-learning 

Evaluate a fixed policy π Value Learning 



CS 188: Artificial Intelligence 

Probability

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Random Variables

▪ A random variable is some aspect of the world about which we 
(may) have uncertainty 

▪ R = Is it raining? 
▪ T = Is it hot or cold? 
▪ D = How long will it take to drive to work? 
▪ L = Where is the ghost? 

▪ We denote random variables with capital letters 

▪ Like variables in a CSP, random variables have domains 

▪ R in {true, false}   (often write as {+r, -r}) 
▪ T in {hot, cold} 
▪ D in [0, ∞) 
▪ L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

▪ Associate a probability with each value of that random variable 

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather:  

𝑃 (𝑊 )
𝑃 (𝑇 )



Probabilistic Models

▪ A probabilistic model is a joint distribution 
over a set of random variables 

▪ Probabilistic models: 
▪ (Random) variables with domains  
▪ Assignments are called outcomes 
▪ Joint distributions: say whether assignments 

(outcomes) are likely 
▪ Normalized: sum to 1.0 
▪ Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Distribution over T,W



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate random variables  
▪ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

𝑃 (𝑡) = ∑
𝑤

𝑃 (𝑡,  𝑤)

𝑃 (𝑤) = ∑
𝑡

𝑃 (𝑡,  𝑤)

𝑃 (𝑇,  𝑊 )
𝑃 (𝑇 )

𝑃 (𝑊 )

𝑃(𝑋1 = 𝑥1) = ∑
𝑥2

𝑃 (𝑋1 = 𝑥1,  𝑋2 = 𝑥2)

hidden (unobserved) variables



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities 
▪ In fact, this is taken as the definition of a conditional probability

P(b)P(a)

P(a,b)

query

evidence

= (proportion of b where a holds)



SELECT the joint 
probabilities 
matching the 

evidence 

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the 
selection 

(make it sum to one) 



Inference by Enumeration
▪ General case: 

▪ Evidence variables:  
▪ Query* variable: 
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want: 

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize 



Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability: 

▪ Example: 
▪ M: meningitis, S: stiff neck

Example 
givens

 P(+m | +s) ≅ 0.008



CS 188: Artificial Intelligence 

Bayes’ Nets

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



▪ Two variables are independent if: 

 

▪ This says that their joint distribution factors into a product two simpler 
distributions 

▪ Another form: 
	  

▪ We write:  

▪ Independence is a simplifying modeling assumption 

▪ Empirical joint distributions: at best “close” to independent 

▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

∀𝑥, 𝑦 :𝑃(𝑥, 𝑦) = 𝑃 (𝑥)𝑃 (𝑦)

∀ 𝑥,  𝑦 :𝑃(𝑥 𝑦) = 𝑃 (𝑥)

𝑋      𝑌

Independence

⊨



Conditional Independence
▪ Unconditional (absolute) independence very rare between variables 

in the same system (why?) 

▪ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments. 

▪ X is conditionally independent of Y given Z written 
      if and only if: 

      or, equivalently, if and only if 

      or 

∀ 𝑥, 𝑦, 𝑧 :𝑃(𝑥, 𝑦 𝑧) = 𝑃 (𝑥 𝑧)𝑃 (𝑦 |𝑧)

∀ 𝑥, 𝑦, 𝑧 :𝑃 (𝑥 |𝑦, 𝑧) = 𝑃 (𝑥 𝑧)

∀ 𝑥, 𝑦, 𝑧 :𝑃 (𝑦 |𝑥, 𝑧) = 𝑃(𝑦 𝑧)



Conditional Independence and the Chain Rule

▪ Chain rule:  works in any order of 
 

     Compete Dependency graph:                           Partial Dependency Graph: 
 

𝑃(𝑋1, 𝑋2, …, 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2 𝑋1)𝑃(𝑋3 𝑋1, 𝑋2)…
𝑋𝑖

𝑋1

𝑋4

𝑋3

𝑋2

𝑃(𝑋4 𝑋1, 𝑋2, 𝑋3)

𝑋1

𝑋4

𝑋3

𝑋2

𝑃(𝑋4 𝑋1,  𝑋3)

𝑃(𝑋3 𝑋1, 𝑋2) 𝑃(𝑋3 𝑋1)

𝑃(𝑋2 𝑋1) 𝑃(𝑋2 𝑋1)

𝑃(𝑋1) 𝑃(𝑋1)



Conditional Independence and the Chain Rule

▪ Chain rule:  

     Partial Dependency graph:                            Independences from the Graph: 
 

𝑃(𝑋1, 𝑋2, …, 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2 𝑋1)𝑃(𝑋3 𝑋1, 𝑋2)…

𝑋1

𝑋4

𝑋3

𝑋2

𝑃(𝑋4 𝑋1,  𝑋3)

𝑃(𝑋3 𝑋1)

𝑃(𝑋2 𝑋1)

𝑃(𝑋1)
𝑋1

𝑋4

𝑋3

𝑋2

𝑋4      𝑋2 |𝑋1, 𝑋3⊨

𝑋3     𝑋2 |𝑋1⊨



Example: Coin Flips

▪ N independent coin flips 

▪ No interactions between variables: absolute independence

X1 X2 Xn



Example: Alarm Network

▪ Variables 
▪ B: Burglary 
▪ A: Alarm goes off 
▪ M: Mary calls 
▪ J: John calls 
▪ E: Earthquake!

B

A

MJ

E



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Conditional Independence

▪ X and Y are independent if 

▪ X and Y are conditionally independent given Z 

▪ (Conditional) independence is a property of a distribution 

▪ Example: 



D-separation: Overview

▪ D-separation:  
▪ a condition / algorithm for answering conditional independence 

queries from just studying the graph 

▪ How: 
▪ Study independence properties for triples 

▪ Analyze complex cases as composition of triples



Recap of Triples

Active Triples Inactive Triples

Causal Chain:

Common Cause:

Common Effect (“v-structure”)



D-Separation
▪ A path is active if each (overlapping) triple is active: 

Note: e.g. for a path A – B – C – D – E, the triples are: 
 
A – B – C, B – C – D, C – D – E  

Note: all it takes to block a path is a single inactive segment 

▪ Are X and Y “D-separated” given evidence variables {Z}? 

▪ Consider all (undirected) paths from X to Y 

▪ If none of the paths are active, then X and Y are D-separated given {Z} 
▪ On the other hand, if there is at least one active path, then X and Y are not D-separated given {Z} 

▪ Independence and D-separation: 
X and Y are guaranteed conditionally independent given {Z}  
IF AND ONLY IF 
X and Y are d-separated given {Z} 
 
 just need to check the graph 

	  

	

Active Triples Inactive Triples



Example

Yes   Yes R

T

B

T’

Red = Nodes are conditionally independent given the evidence
Blue = Nodes are d-separated given the evidence

No   ??

No   ??



▪ Examples: 

▪ Posterior probability 

▪ Most likely explanation: 

Inference

▪ Inference: calculating some useful 
quantity from a joint probability 
distribution



Inference by Enumeration
▪ General case: 

▪ Evidence variables:  
▪ Query* variable: 
▪ Hidden variables:

All variables

* Works fine with 
multiple query 
variables, too

▪ We want: 

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize 



Inference by Enumeration in Bayes’ Net
▪ Given unlimited time, inference in BNs is easy 

▪ Reminder of inference by enumeration by example:
B E

A

MJ



Factor Summary

▪ In general, when we write P(Y1 … YN | X1 … XM) 

▪ It is a “factor,” a multi-dimensional array 

▪ Its values are P(y1 … yN | x1 … xM) 

▪ Any assigned (=lower-case) X or Y is a dimension selected from the array



Inference by Enumeration: Procedural Outline

▪ Track objects called factors 
▪ Initial factors are local CPTs (one per node) 

▪ Any known values are selected 
▪ E.g. if we know                  , the initial factors are 

▪ Procedure: Join all factors, eliminate all hidden variables, normalize

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

▪ First basic operation: joining factors 

▪ Combining factors: 
▪ Just like a database join 
▪ Get all factors over the joining variable 
▪ Build a new factor over the union of the variables involved 

▪ Example: Join on R 

▪ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



General Variable Elimination

▪ Query: 

▪ Start with initial factors: 
▪ Local CPTs (but instantiated by evidence) 

▪ While there are still hidden variables (not Q or 
evidence): 
▪ Pick a hidden variable Hi 
▪ Join all factors mentioning Hi 

▪ Eliminate (sum out) Hi 

▪ Join all remaining factors and normalize



Sampling

▪ Sampling is a lot like repeated simulation 

▪ Predicting the weather, basketball games, … 

▪ Basic idea 

▪ Draw N samples from a sampling distribution S 
▪ Compute an approximate posterior probability 
▪ Show this converges to the true probability P

▪ Why sample? 
▪ Learning: get samples from a distribution 

you don’t know 
▪ Inference: getting a sample is faster than 

computing the right answer (e.g. with 
variable elimination) 



Sampling

▪ Sampling from given distribution 

▪ Step 1: Get sample u from uniform 
distribution over [0, 1) 
▪ E.g. random() in python 

▪ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome associated 
with a sub-interval of [0,1) with sub-
interval size equal to probability of the 
outcome

▪ Example 

▪ If random() returns u = 0.83, 
then our sample is C = blue 

▪ E.g, after sampling 8 times: 

C P(C)
red 0.6

green 0.1
blue 0.3



Prior Sampling

▪ For i = 1, 2, …, n 

▪ Sample xi from P(Xi | Parents(Xi)) 

▪ Return (x1, x2, …, xn)



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Example

▪ We’ll get a bunch of samples from the BN: 
	 +c, -s, +r, +w 
	 +c, +s, +r, +w 
	 -c, +s, +r,  -w 
	 +c, -s, +r, +w 
	 -c,  -s,  -r, +w 

▪ If we want to know P(W) 
▪ We have counts <+w:4, -w:1> 
▪ Normalize to get P(W) = <+w:0.8, -w:0.2> 
▪ This will get closer to the true distribution with more samples 
▪ Can estimate anything else, too 
▪ What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)? 
▪ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Reflections on Prior Sampling

Pros: 
▪ Much simpler than enumeration or variable elimination: We only ever need samples 

(scalar values) for each variable, not probabilities.  

▪ Therefore we only ever need k rows from one CPT table to sample a variable  that 
has k possible values. No potentially exponential increase with number of variables.  

▪ Therefore it doesn’t matter as much how sparse the graph is: we still only need k 
rows from each CPT table, regardless of how many rows (how many parents) it has. 

Cons: 
▪ So far we can’t deal with evidence. 
▪ We don’t get exact values, and its expensive to get accurate estimates of small 

probabilities. E.g. estimating a 0.001 probability with 1% relative error requires 
around 107 samples. 

𝑋



	 +c, -s, +r, +w 
	 +c, +s, +r, +w 
	 -c, +s, +r,  -w 
	 +c, -s, +r, +w 
	 -c,  -s,  -r, +w

Rejection Sampling

▪ Let’s say we want P(C) 
▪ No point keeping all samples around 
▪ Just tally counts of C as we go 

▪ Let’s say we want P(C | +s) 
▪ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=+s 
▪ This is called rejection sampling 
▪ It is also consistent for conditional 

probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
▪ Input: evidence instantiation 

▪ For i = 1, 2, …, n 

▪ Sample xi from P(Xi | Parents(Xi)) 

▪ If xi not consistent with evidence 
▪ Reject: return – no sample is generated in this cycle 

▪ Return (x1, x2, …, xn)



Reflections on Rejection Sampling

Pros: 
▪ Inherits all the pros of prior sampling. 
▪ Now we can deal with evidence.  
Cons: 
▪ Dealing with evidence can be very costly. Our rejection rate is 1- the marginal 

probability of the evidence, and getting N good samples requires taking N/p samples 
overall, where p is the marginal probability of the evidence.  

▪ We still don’t get exact values, and its still expensive to get accurate estimates of 
small probabilities. E.g. estimating a 0.001 probability with 1% relative error requires 
around 107 samples, multiplied by 1/marginal probability of the evidence. 



Likelihood Weighting



Likelihood Weighting
▪ Input: evidence instantiation 

▪ w = 1.0 

▪ for i = 1, 2, …, n 

▪ if Xi is an evidence variable 
▪ Xi = observation xi for Xi 
▪ Set w = w * P(xi | Parents(Xi)) 

▪ else 
▪ Sample xi from P(Xi | Parents(Xi)) 

▪ return (x1, x2, …, xn), w



Likelihood Weighting Estimates

▪ We use the weights to estimate probabilities: 

Where  is the weight of a sample , and  is true if  in sample .

𝑝(𝑥+) ≈
∑𝑠∈{𝑠  𝑥+(𝑠)} 𝑤𝑠

∑𝑠 𝑤𝑠

𝑤𝑠 𝑠 𝑥 + (𝑠) 𝑋 = 𝑥+ 𝑠



Likelihood Weighting

▪ Likelihood weighting is good 
▪ We have taken evidence into account as we generate 

the sample 
▪ E.g. here, W’s value will get picked based on the 

evidence values of S, R 
▪ More of our samples will reflect the state of the world 

suggested by the evidence 
 

▪ Likelihood weighting doesn’t solve all our 
problems 
▪ Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence) 

▪ We would like to consider evidence when we 
sample every variable (leads to Gibbs sampling)

S R

W

C



Gibbs Sampling

▪ Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an arbitrary 
instantiation consistent with the evidence.  Sample one variable at a time, conditioned 
on all the rest, but keep evidence fixed.  Keep repeating this for a long time. 

▪ Property: in the limit of repeating this infinitely many times the resulting samples come 
from the correct distribution (i.e. conditioned on evidence). 

▪ Rationale: both upstream and downstream variables condition on evidence. 
  

▪ In contrast: likelihood weighting only conditions on upstream evidence, and hence 
weights obtained in likelihood weighting can sometimes be very small.  Sum of weights 
over all samples is indicative of how many “effective” samples were obtained, so we 
want high weight.



Gibbs Sampling: Conditioning Variables

▪ No! Remember that the node equations for children depend on their other 
parents. The complete set is called the Markov Blanket of the node, and 
includes the other parents of the sampled node’s children (orange):



Gibbs Sampling: Node probability

▪ To sample, we first compute a factor that includes all node CPTs that depend on A. 

▪ Then we normalize it to get a conditional probability for A.  

▪ Finally we sample to get a new value for A.  

                                                               multiply CPTs with A:       

                                                                   which is the factor:       
                                                                   normalize (sum over A and divide):   

                                                                                 

                                                                    divide: 

                                                                                     

                                                                     take a sample of A from this distribution.

𝑝(𝐴 𝑏, 𝑐) 𝑝(𝑓 𝐴, 𝑑) 𝑝(𝑔 |𝐴, 𝑒)

𝑝(𝐴, 𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒)

𝑍 = ∑
𝑎

𝑃 (𝑎, 𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒) = 𝑃 (𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒)

𝑝(𝐴 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) = 𝑝(𝐴, 𝑓, 𝑔 𝑏, 𝑐, 𝑑, 𝑒)/𝑍

B C

D E

F G



▪ Step 2: Initialize other variables  
▪ Randomly

Gibbs Sampling Example with Evidence

▪ Step 1: Fix evidence 
▪ R = +r 

▪ Steps 3: Repeat 
▪ Choose a non-evidence variable X 
▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

Eventually: Compute probabilities with counts over many samples, e.g. , , 𝑝(𝑆 | + 𝑟) 𝑝(𝑊 | + 𝑟) 𝑝(𝐶, 𝑊 | + 𝑟)



Reflections on Gibbs Sampling
Pros: 

▪ Similar to other sampling methods: Only needs k rows from each CPT table for a 
variable X with k values.  

▪ It also doesn’t matter how sparse the graph is, in fact Gibbs sampling typically 
converges faster on denser graphs, because it mixes faster.  

▪ Samples are unweighted, and come from the exact posterior probability conditioned on 
the evidence (eventually). So estimates can be fairly fast (modulo mixing).  

Cons: 

▪ There is a “warm-up” period for the sampler to reach the final distribution.  

▪ Because samples are correlated, need more of them to get estimates at a given 
accuracy compared to other sampling methods.  

▪ Both of the above depend on “mixing time,” for which smaller is better.  
There is much theory and many techniques to improve Gibbs sampling.



Decision Networks



Decision Networks

Forecast

Umbrella

U

(future) 
Weather



Decision Networks

Forecast

Umbrella

U

▪ New node types: 

▪ Chance nodes (circular or oval, 
just like BNs) 

▪ Actions (rectangles, like actions 
in MDPs) 

▪ Utility node (diamond, like 
rewards in MDPs)

(future) 
Weather



Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected 
utility by averaging over C, conditioned on B. 

▪ Then we take the maximum over A for each B. 
▪ Finally we can average over B to get the MEU. 

C

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

U

A

B

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

Compute expected utility over C | B



Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected 
utility by averaging over C, conditioned on B. 

▪ Then we take the maximum over A for each B. 
▪ Finally we can average over B to get the MEU. 

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

U

A

B

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

B MEU(B)
+b 4.1
-b 0.4

Compute expected utility over C | B
Choose best A | B



Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected 
utility by averaging over C, conditioned on B. 

▪ Then we take the maximum over A for each B. 
▪ Finally we can average over B to get the MEU. 

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

UB

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

B MEU(B)
+b 4.1
-b 0.4

MEU = 3.4

Compute expected utility over C | B
Choose best A | B

Compute expected utility over B



Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected 
utility by averaging over C, conditioned on B. 

▪ Then we take the maximum over A for each B. 
▪ Finally we can average over B to get the MEU. 

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

U

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

B MEU(B)
+b 4.1
-b 0.4

MEU = 3.4

Compute expected utility over C | B
Choose best A | B

Compute expected utility over B



Value of Information
▪ Value of Information is the difference in MEU between networks with 

different action conditioning (information).  
	

Forecast

Umbrella

U

(future) 
Weather

Forecast

Umbrella

U

(future) 
Weather

𝑀𝐸𝑈(∅) ≤ 𝑀𝐸𝑈(𝐹 )

Forecast

Umbrella

U

(future) 
Weather

≤ 𝑀𝐸𝑈(𝐹, 𝑊 )

Difference = 𝑉𝑜𝐼(𝐹 )
Difference = 𝑉𝑜𝐼(𝐹, 𝑊 )

Perfect 
Information 
(Economics)

Difference = 𝑉𝑜𝐼(𝑊 |𝐹 )



Value of Information/VPI
▪ Value of Information is the difference in MEU between networks with 

different action conditioning (information).  
	

Forecast

Umbrella

U

(future) 
Weather

Forecast

Umbrella

U

(future) 
Weather

𝑀𝐸𝑈(∅) = 70 ≤ 𝑀𝐸𝑈(𝐹 ) = 73.4

Forecast

Umbrella

U

(future) 
Weather

≤ 𝑀𝐸𝑈(𝐹, 𝑊 ) = 91

Difference = 𝑉𝑜𝐼(𝐹 ) = 3.4
Difference =  𝑉𝑜𝐼(𝐹, 𝑊 ) = 21

Perfect 
Information 
(Economics)

Difference =  𝑉𝑜𝐼(𝑊 |𝐹 ) = 17.6



 is value of knowing E’ given evidence e. 
▪ Nonnegative: 

▪ Nonadditive (think of observing Ej twice) 

▪ Order-independent

𝑉𝑃𝐼(𝐸′￼|𝑒)

VPI Properties



POMDPs

▪ MDPs have: 
▪ States S 
▪ Actions A 
▪ Transition function P(s’|s,a) (or T(s,a,s’)) 
▪ Rewards R(s,a,s’) 

▪ POMDPs add: 
▪ Observations O 
▪ Observation function P(o|s) (or O(s,o)) 

▪ POMDPs are MDPs over belief 
	 states b (distributions over S) 

▪ We’ll be able to say more in a few lectures

a

s

s, a

s,a,s’
s'

a

b

b, a

     o
b'



CS 188: Artificial Intelligence 

Hidden Markov Models

University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Hidden Markov Models

▪ Markov chains OK for games, weak for real robots 

▪ Need observations to update your beliefs 

▪ Hidden Markov models (HMMs) 
▪ Underlying Markov chain over states X 
▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X5X2X1 X3 X4



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪ An HMM is defined by: 
▪ Initial distribution: 
▪ Transitions: 
▪ Emissions:

EmissionsTransitions



Conditional Independence

▪ HMMs have two important independence properties: 

▪ Markov hidden process: future depends on past via the present 

▪ Current observation independent of all else given current state 

▪ Does this mean that evidence variables are guaranteed to be independent? 

▪ No, they are correlated by the hidden state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Inference: Base Cases

X2X1
E1

X1

Passage of Time: Observation:



Two Steps: Passage of Time + Observation

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution 

▪ Sometimes |X| is too big to use exact inference 
▪ |X| may be too big to even store B(X) 
▪ E.g. X is continuous 

▪ Solution: approximate inference 
▪ Track samples of X, not all values 
▪ Samples are called particles 
▪ Typically, there are multiple samples per time step 
▪ Particles do not interact with each other, and computing 

time per step is linear in the number of samples 
▪ But: number needed may be large 
▪ In memory: list of particles, not states 

▪ This is how robot localization works in practice 

▪ Particle is just new name for sample



1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)

1 2 3

3

2

1
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1 2 3

3

2

1



1 2 3

3

2
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Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)

1 2 3

3

2

1



1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next 
position from the transition model 

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities 

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place 

▪ This captures the passage of time 
▪ If enough samples, close to exact values before and 

after (consistent) 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)

1 2 3

3

2

1



▪ Slightly trickier: 

▪ Don’t sample observation, fix it 

▪ Similar to likelihood weighting, downweight 
samples based on the evidence 

▪ As before, the probabilities don’t sum to one, 
since all have been down-weighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



Recall: Sampling from a Set

▪ Sampling from given distribution 

▪ Step 1: Get sample u from uniform 
distribution over [0, 1) 
▪ E.g. random() in python 

▪ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome associated 
with a sub-interval of [0,1) with sub-
interval size equal to probability of the 
outcome

▪ Example 

▪ If random() returns u = 0.83, 
then our sample is C = blue 

▪ E.g, after sampling 8 times: 

C P(C)
red 0.6

green 0.1
blue 0.3



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample 

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement) 

▪ This is equivalent to renormalizing the 
distribution 

▪ Now the update is complete for this time step, 
continue with the next one

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)

1 2 3

3

2

1

1 2 3

3

2

1



Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit distribution

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Elapse Weight Resample

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)

     Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

1 2 3

3

2

1



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)
▪ We want to track multiple variables over time, using multiple 

sources of evidence 

▪ Idea: Repeat a fixed Bayes net structure at each time 

▪ Variables from time t can condition on those from t-1 

▪ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

[Demo: pacman sonar ghost DBN model (L15D6)]



Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets 

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed 

▪ Online belief updates: Eliminate all variables from the previous time step; store factors for current 
time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b



DBN Particle Filters

▪ A particle is a complete sample for a time step 

▪ Initialize: Generate prior samples for the t=1 Bayes net 

▪ Example particle: G1
a = (3,3) G1

b = (5,3)  

▪ Elapse time: Sample a successor for each particle  

▪ Example successor: G2
a = (2,3) G2

b = (6,3) 

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample 

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b )  

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood
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State Space Graphs vs. Search Trees
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We construct both 
on demand – and 
we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph



Depth-First Search



Depth-First Search

S
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Strategy: expand a 
deepest node first 

Implementation: 
Fringe is a LIFO stack



Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand? 
▪ Some left prefix of the tree. 
▪ Could process the whole tree! 
▪ If m is finite, takes time O(bm) 

▪ How much space does the fringe take? 
▪ Only has siblings on path to root, so O(bm) 

▪ Is it complete? 
▪ m could be infinite, so only if we prevent that 

▪ Is it optimal? 
▪ No, it finds the “leftmost” solution, regardless 

of depth or cost



Breadth-First Search



Breadth-First Search
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Search 

Tiers

Strategy: expand a 
shallowest node first 

Implementation: Fringe 
is a FIFO queue



Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand? 
▪ Processes all nodes above shallowest solution 
▪ Let depth of shallowest solution be s 
▪ Search takes time O(bs) 

▪ How much space does the fringe take? 
▪ Has roughly the last tier, so O(bs) 

▪ Is it complete? 
▪ s must be finite if a solution exists, so yes! 

▪ Is it optimal? 
▪ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand? 
▪ Processes all nodes with cost less than cheapest solution! 
▪ If that solution costs C* and arcs cost at least ε , then the “effective depth” 

is roughly C*/ε 

▪ Takes time O(bC*/ε) (exponential in effective depth) 

▪ How much space does the fringe take? 
▪ Has roughly the last tier, so O(bC*/ε) 

▪ Is it complete? 
▪ Assuming best solution has a finite cost and minimum arc cost is positive, 

yes! 

▪ Is it optimal? 
▪ Yes!  (Proof next lecture via A*)

b

C*/ε  “tiers”
c ≤ 3

c ≤ 2
c ≤ 1
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Greedy Search



Greedy Search

▪ Strategy: expand a node that you think is 
closest to a goal state 
▪ Heuristic: estimate of distance to nearest goal for 

each state 

▪ A common case: 
▪ Best-first takes you straight to the (wrong) goal 

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]  
[Demo: contours greedy pacman small maze (L3D4)]



A* Search



Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n) 
▪ Greedy orders by goal proximity, or forward cost  h(n) 

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c
h=7

3

e h=1
1

Example: Teg Grenager

S

a

b ed

G

f=0+6

f = 1+5

f = 2+6 f = 4+2

f = 6+0

f = 9+1



Properties of A*

…
b

…
b

Uniform-Cost A*



Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if: 

	 where               is the true cost to a nearest goal 

▪ Examples: 

▪ Coming up with admissible heuristics is most of what’s involved in using 
A* in practice.

4
15



Comparison

Greedy Uniform Cost A*



A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs 

▪ A* is optimal with admissible / consistent heuristics 

▪ Heuristic design is key: often use relaxed problems
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Example: Map Coloring

▪ Variables: 

▪ Domains: 

▪ Constraints: adjacent regions must have different colors 

▪ Solutions are assignments satisfying all constraints, e.g.: 

 

Implicit:

Explicit:



Constraint Graphs



Varieties of Constraints

▪ Varieties of Constraints 
▪ Unary constraints involve a single variable (equivalent to reducing 

domains), e.g.: 
	  

▪ Binary constraints involve pairs of variables, e.g.: 

▪ Higher-order constraints involve 3 or more variables: 
	    e.g., cryptarithmetic column constraints 

▪ Preferences (soft constraints): 
▪ E.g., red is better than green 
▪ Often representable by a cost for each variable assignment 
▪ Gives constrained optimization problems 
▪ (We’ll ignore these until we get to Bayes’ nets) 

 



Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs 

▪ Idea 1: One variable at a time 
▪ Variable assignments are commutative, so fix ordering 
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red] 
▪ Only need to consider assignments to a single variable at each step 

▪ Idea 2: Check constraints as you go 
▪ I.e. consider only values which do not conflict with previous assignments 
▪ Might have to do some computation to check the constraints 
▪ “Incremental goal test” 

▪ Depth-first search with these two improvements 
	 is called backtracking search (not the best name) 

▪ Can solve n-queens for n ≈ 25



Backtracking Example



Improving Backtracking

▪ General-purpose ideas give huge gains in speed 

▪ Ordering: 
▪ Which variable should be assigned next? 
▪ In what order should its values be tried? 

▪ Filtering: Can we detect inevitable failure early? 

▪ Structure: Can we exploit the problem structure?



▪ Filtering: Keep track of domains for unassigned variables and cross off bad options 
▪ Forward checking: Cross off values that violate a constraint when added to the existing 

assignment

Filtering: Forward Checking

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Forward Checking
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Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be 
assigned without violating a constraint 

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
▪ A simple form of propagation makes sure all arcs are consistent: 

▪ Important: If X loses a value, neighbors of X need to be rechecked! 
▪ Arc consistency detects failure earlier than forward checking 
▪ Can be run as a preprocessor or after each assignment  
▪ What’s the downside of enforcing arc consistency?

Remember: 
Delete from  

the tail!

WA SA

NT Q

NSW

V



Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV): 
▪ Choose the variable with the fewest legal left values in its domain 

▪ Why min rather than max? 

▪ Also called “most constrained variable” 

▪ “Fail-fast” ordering



Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value 
▪ Given a choice of variable, choose the least 

constraining value 
▪ I.e., the one that rules out the fewest values in the 

remaining variables 
▪ Note that it may take some computation to determine 

this!  (E.g., rerunning filtering) 

▪ Why least rather than most? 

▪ Combining these ordering ideas makes 
	 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]



Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains 

Cutset conditioning: instantiate (in all ways) a set of variables such that the 
remaining constraint graph is a tree 

Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Summary: CSPs

CSPs are a special kind of search problem: 
States are partial assignments 
Goal test defined by constraints 

Basic solution: backtracking search 

Speed-ups: 
Ordering 
Filtering 
Structure 

Iterative min-conflicts is often effective in practice



Hill Climbing

Simple, general idea: 
Start wherever 
Repeat: move to the best neighboring state 
If no neighbors better than current, quit 

What’s bad about this approach? 
Complete? 
Optimal? 

What’s good about it?



Hill Climbing Diagram



Beam Search

Like greedy hillclimbing search, but keep K states at all 
times: 

Variables: beam size, encourage diversity? 
The best choice in MANY practical settings 
Complete?  Optimal? 
Why do we still need optimal methods?

Greedy Search Beam Search
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Zero-Sum Games

▪ Zero-Sum Games 
▪ Agents have opposite utilities (values on outcomes) 
▪ Pure competition:  

▪ One maximizes, the other minimizes

▪ General-Sum Games 
▪ Agents have independent utilities (values on outcomes) 
▪ Cooperation, indifference, competition, shifting alliances, 

and more are all possible 
▪ Team Games 

▪ Common payoff for all team members



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8



Minimax Values

+8+4-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Minimax Example

12 8 5 23 2 144 6

v=3

v=3

v=2 v=14v=14 5v=14 5 2



Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters: 
more pruning is possible if good moves come first

v=3

v=3

v=2 v=2



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search 

▪ Ideal function: returns the actual minimax value of the position 
▪ In practice: typically weighted linear sum of features: 

 

▪ E.g.  f1(s) = (num white queens – num black queens), etc. 
▪ Or a more complex nonlinear function (e.g., NN) trained by self-play RL



Depth Matters

▪ Evaluation functions are always 
imperfect 

▪ The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters 

▪ An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Summary

▪ Games are decision problems with multiple agents 
▪ Huge variety of issues and phenomena depending on details of interactions and payoffs 

▪ For zero-sum games, optimal decisions defined by minimax 
▪ Implementable as a depth-first traversal of the game tree 
▪ Time complexity O(bm), space complexity O(bm) 

▪ Alpha-beta pruning 
▪ Preserves optimal choice at the root 
▪ Alpha/beta values keep track of best obtainable values from any max/min nodes on path 

from root to current node 
▪ Time complexity drops to O(bm/2) with ideal node ordering  

▪ Exact solution is impossible even for “small” games like chess
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Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!



Expectimax Pseudocode

def exp-value(state): 
initialize v = 0 
for each successor of state: 
	 p = probability(successor) 

v += p * value(successor) 
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown 
▪ A probability distribution is an assignment of weights to outcomes 

▪ Example: Traffic on freeway 
▪ Random variable: T = whether there’s traffic 
▪ Outcomes: T in {none, light, heavy} 
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25 

▪ Some laws of probability (more later): 
▪ Probabilities are always non-negative 
▪ Probabilities over all possible outcomes sum to one 

▪ As we get more evidence, probabilities may change: 
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60 
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25



▪ The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes 

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



Mixed Layer Types

▪ E.g. Backgammon 

▪ Expectiminimax 
▪ Environment is an 

extra “random 
agent” player that 
moves after each 
min/max agent 

▪ Each node 
computes the 
appropriate 
combination of its 
children



Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players? 

▪ Generalization of minimax: 
▪ Terminals have utility tuples 
▪ Node values are also utility tuples 
▪ Each player maximizes its own component 
▪ Can give rise to cooperation and 
	 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5



Maximum Expected Utility

▪ Why should we average utilities?  Why not minimax? 

▪ Principle of maximum expected utility: 
▪ A rational agent should chose the action that maximizes its expected 

utility, given its knowledge 

▪ Questions: 
▪ Where do utilities come from? 
▪ How do we know such utilities even exist? 
▪ How do we know that averaging even makes sense? 
▪ What if our behavior (preferences) can’t be described by utilities?



Preferences

▪ An agent must have preferences among: 
▪ Prizes: A, B, etc. 
▪ Lotteries: situations with uncertain prizes 

▪ Notation: 
▪ Preference: 
▪ Indifference:

A                  B

p                1-p

  A Lottery  A Prize

A



Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality
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Model-Based Classification

▪ Model-based approach 
▪ Build a model (e.g. Bayes’ net) where 

both the output label and input 
features are random variables 

▪ Instantiate any observed features 
▪ Query for the distribution of the label 

conditioned on the features 

▪ Challenges 
▪ What structure should the BN have? 
▪ How should we learn its parameters?



Inference for Naïve Bayes

▪ Goal: compute posterior distribution over label variable Y 
▪ Step 1: get joint probability of label and evidence for each label 

▪ Step 2: sum to get probability of evidence 

▪ Step 3: normalize by dividing Step 1 by Step 2

+



Naïve Bayes for Text

▪ Bag-of-words Naïve Bayes: 
▪ Features: Wi is the word at position i 
▪ As before: predict label conditioned on feature variables (spam vs. ham) 
▪ As before: assume features are conditionally independent given label 
▪ New: each Wi is identically distributed 

▪ Generative model: 

▪ “Tied” distributions and bag-of-words 
▪ Usually, each variable gets its own conditional probability distribution P(F|Y) 
▪ In a bag-of-words model 

▪ Each position is identically distributed 
▪ All positions share the same conditional probs P(W|Y) 
▪ Why make this assumption? 

▪ Called “bag-of-words” because model is insensitive to word order or reordering

Word at position 
i, not ith word in 
the dictionary!



Example: Spam Filtering

▪ Model: 

▪ What are the parameters? 

▪ Where do these tables come from?

the :  0.0156 
to  :  0.0153 
and :  0.0115 
of  :  0.0095 
you :  0.0093 
a   :  0.0086 
with:  0.0080 
from:  0.0075 
...

the :  0.0210 
to  :  0.0133 
of  :  0.0119 
2002:  0.0110 
with:  0.0108 
from:  0.0107 
and :  0.0105 
a   :  0.0100 
...

ham : 0.66 
spam: 0.33



Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4

Gary 0.00002 0.00021 -11.8 -8.9

would 0.00069 0.00084 -19.1 -16.0

you 0.00881 0.00304 -23.8 -21.8

like 0.00086 0.00083 -30.9 -28.9

to 0.01517 0.01339 -35.1 -33.2

lose 0.00008 0.00002 -44.5 -44.0

weight 0.00016 0.00002 -53.3 -55.0

while 0.00027 0.00027 -61.5 -63.2

you 0.00881 0.00304 -66.2 -69.0

sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9



Important Concepts

▪ Data: labeled instances (e.g. emails marked spam/ham) 
▪ Training set 
▪ Held out set 
▪ Test set 

▪ Features: attribute-value pairs which characterize each x 

▪ Experimentation cycle 
▪ Learn parameters (e.g. model probabilities) on training set 
▪ (Tune hyperparameters on held-out set) 
▪ Compute accuracy of test set 
▪ Very important: never “peek” at the test set! 

▪ Evaluation (many metrics possible, e.g. accuracy) 
▪ Accuracy: fraction of instances predicted correctly 

▪ Overfitting and generalization 
▪ Want a classifier which does well on test data 
▪ Overfitting: fitting the training data very closely, but not generalizing 

well 
▪ We’ll investigate overfitting and generalization formally in a few lectures

Training 
Data

Held-Out 
Data

Test 
Data



Confusion Matrix

▪ Used to show space of actual and predicted values

From evidentlyai.com
From Wikipedia



Performance Metrics

▪ Accuracy 
▪ Number of correct predictions from the entire data set: 

(TP + TN) /  (TP + FP + TN + FN) 
▪ Precision 
▪ Number of correct positive predictions from total positive predictions: 

TP /  (TP + FP) 

▪ Recall 
▪ Number of correct positive predictions from the actual positive samples: 

TP /  (TP + FN) 

▪ F-score 
▪ Harmonic mean of Precision and Recall: 2TP /  (2TP + FP + FN)
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Parameter Estimation

▪ Estimating the distribution of a random variable 

▪ Elicitation: ask a human (why is this hard?) 

▪ Empirically: use training data (learning!) 
▪ E.g.: for each outcome x, look at the empirical rate of that value: 

▪ This is the estimate that maximizes the likelihood of the data

r r b

r b b

r bb
r

b
b

r b
b

r

b

b



Laplace Smoothing

▪ Laplace’s estimate: 
▪ Pretend you saw every outcome once 

more than you actually did 

▪ Can derive this estimate with 
Dirichlet priors (see cs281a)

r r b



Summary

▪ Bayes rule lets us do diagnostic queries with causal probabilities 

▪ The naïve Bayes assumption takes all features to be independent given the class label 

▪ We can build classifiers out of a naïve Bayes model using training data 

▪ Smoothing estimates is important in real systems



CS 188: Artificial Intelligence 
Perceptrons and Logistic Regression

Instructors: John Canny & Oliver Grillmeyer —- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Feature Vectors

Hello, 

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2 
YOUR_NAME   : 0 
MISSPELLED  : 2 
FROM_FRIEND : 0 
...

SPAM 
or 
+

PIXEL-7,12  : 1 
PIXEL-7,13  : 0 
... 
NUM_LOOPS   : 1 
...

“2”



Linear Classifiers

▪ Inputs are feature values 
▪ Each feature has a weight 
▪ Sum is the activation 

▪ If the activation is: 
▪ Positive, output +1 
▪ Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Weights
▪ Binary case: compare features to a weight vector 
▪ Learning: figure out the weight vector from examples

# free      : 2 
YOUR_NAME   : 0 
MISSPELLED  : 2 
FROM_FRIEND : 0 
...

# free      : 4 
YOUR_NAME   :-1 
MISSPELLED  : 1 
FROM_FRIEND :-3 
...

# free      : 0 
YOUR_NAME   : 1 
MISSPELLED  : 1 
FROM_FRIEND : 1 
...

Dot product            positive 
means the positive class



Binary Decision Rule

▪ In the space of feature vectors 
▪ Examples are points 
▪ Any weight vector is a hyperplane 
▪ One side corresponds to Y=+1 
▪ Other corresponds to Y=-1

BIAS  : -3 
free  :  4 
money :  2 
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Learning: Binary Perceptron

▪ Start with weights = 0 
▪ For each training instance: 
▪ Classify with current weights 

▪ If correct (i.e., y=y*), no change! 
▪ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Multiclass Decision Rule

▪ If we have multiple classes: 
▪ A weight vector for each class: 

▪ Score (activation) of a class y: 

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

▪ Start with all weights = 0 
▪ Pick up training examples one by one 
▪ Predict with current weights 

▪ If correct, no change! 
▪ If wrong: lower score of wrong answer, 

raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1 
win   : 0 
game  : 0  
vote  : 0  
the   : 0   
...

BIAS  : 0   
win   : 0  
game  : 0  
vote  : 0  
the   : 0   
...

BIAS  : 0  
win   : 0  
game  : 0  
vote  : 0  
the   : 0   
...

“win the vote”

“win the election”

“win the game”

Sample A 
BIAS : 1 
win  : 1 
game : 0 
vote : 1 
the  : 1

Sample B 
BIAS : 1 
win  : 1 
game : 0 
vote : 0 
the  : 1

Sample C 
BIAS : 1 
win  : 1 
game : 1 
vote : 0 
the  : 1

 fA 
  1 
  1 
- 0 = 
  1 
  1 

wS 
 0 
-1 
 0 
-1 
-1 
...

 fA 
  1 
  1 
+ 0 = 
  1 
  1 

wP 
 1 
 1 
 0 
 1 
 1 
...

wS . fA = 1; wP . fA = 0; wT . fA = 0

wS . fB = -2; wP . fB = 3; wT . fB = 0

wS . fC = -2; wP . fC = 3; wT . fC = 0

 fC 
  1 
  1 
+ 1 = 
  0 
  1 

wS 
 1 
 0 
 1 
-1 
 0 
...

 fC 
  1 
  1 
- 1 = 
  0 
  1 

wP 
 0 
 0 
-1 
 1 
 0 
...



Properties of Perceptrons

▪ Separability: true if some parameters get the training set 
perfectly correct 

▪ Convergence: if the training is separable, perceptron will 
eventually converge (binary case) 

▪ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get probabilistic decisions?

▪ Perceptron scoring: 

▪ If 	 	 	         very positive  want probability going to 1 

▪ If  	 	 	         very negative  want probability going to 0 

▪ Sigmoid function



Best w? 

▪ Maximum likelihood estimation: 

with:

= Logistic Regression



Multiclass Logistic Regression

▪ Recall Perceptron: 
▪ A weight vector for each class: 

▪ Score (activation) of a class y: 

▪ Prediction highest score wins 

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation: 

with:

= Multi-Class Logistic Regression



CS 188: Artificial Intelligence 

Optimization and Neural Nets

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



1-D Optimization

▪ Could evaluate	 	 	 and 
▪ Then step in best direction 

▪ Or, evaluate derivative: 

▪ Tells which direction to step into



Gradient Ascent

▪ Perform update in uphill direction for each coordinate 

▪ The steeper the slope (i.e. the higher the derivative) the bigger the step 
for that coordinate 

▪ E.g., consider:  

▪   Updates: ▪ Updates in vector notation: 

	 with: = gradient



Optimization Procedure: Gradient Ascent

▪ init 

▪ for iter = 1, 2, …

▪     : learning rate --- hyperparameter that needs to be chosen 
carefully 

▪ How? Try multiple choices 
▪ Crude rule of thumb: update changes       about 0.1 – 1 % 



Batch Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …



Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …
▪ pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …
▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



Multi-class Logistic Regression

▪ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…



Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function



Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

▪ Much larger weight vector to learn 

▪ Keep training (adjust weights with gradient ascent) until we meet our 
performance criteria or validation set performance starts decreasing



Summary of Key Ideas
▪ Optimize probability of label given input 

▪ Continuous optimization 
▪ Gradient ascent: 

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives) 
▪ Take step in the gradient direction 
▪ Repeat (until held-out data accuracy starts to drop = “early stopping”) 

▪ Deep neural nets 
▪ Last layer = still logistic regression 
▪ Now also many more layers before this last layer 

▪ = computing the features 
▪  the features are learned rather than hand-designed 

▪ Universal function approximation theorem 
▪ If         neural net is large enough 
▪ Then   neural net can represent any continuous mapping from input to output with arbitrary accuracy
▪ But remember: need to avoid overfitting  / memorizing the training data  early stopping! 

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



CS 188: Artificial Intelligence 

Neural Nets (wrap-up) and Decision Trees

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Object Detection



Features and Generalization

Image HoG



Performance

graph credit Matt 
Zeiler, Clarifai

AlexNet



Inductive Learning (Science)

▪ Simplest form: learn a function from examples 
▪ A target function: g 
▪ Examples: input-output pairs (x, g(x)) 
▪ E.g. x is an email and g(x) is spam / ham 
▪ E.g. x is a house and g(x) is its selling price 

▪ Problem: 
▪ Given a hypothesis space H 
▪ Given a training set of examples xi 
▪ Find a hypothesis h(x) such that h ~ g 

▪ Includes: 
▪ Classification (outputs = class labels) 
▪ Regression (outputs = real numbers) 

▪ How do perceptron and naïve Bayes fit in?  (H, h, g, etc.)



Inductive Learning

▪ Curve fitting (regression, function approximation): 

▪ Consistency vs. simplicity 
▪ Ockham’s razor



Decision Trees



Features

▪ Features, aka attributes 
▪ Sometimes: TYPE=French 
▪ Sometimes: fTYPE=French(x) = 1



Decision Trees

▪ Compact representation of a function: 
▪ Truth table 
▪ Conditional probability table 
▪ Regression values 

▪ True function 
▪ Realizable: in H



Choosing an Attribute

▪ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or 
“all negative” 

▪ So: we need a measure of how “good” a split is, even if the results aren’t perfectly 
separated out



Entropy

▪ General answer: if prior is <p1,…,pn>: 
▪ Information is the expected code length 

▪ Also called the entropy of the distribution 
▪ More uniform = higher entropy 
▪ More values = higher entropy 
▪ More peaked = lower entropy 
▪ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit



Information Gain

▪ Back to decision trees! 
▪ For each split, compare entropy before and after 

▪ Difference is the information gain 
▪ Problem: there’s more than one distribution after split! 

▪ Solution: use expected entropy, weighted by the number of 
examples



Example: Learned Tree

▪ Decision tree learned from these 12 examples: 

▪ Substantially simpler than “true” tree 
▪ A more complex hypothesis isn't justified by data 

▪ Also: it’s reasonable, but wrong



Example: Miles Per Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe



Find the First Split

▪ Look at information gain for 
each attribute 

▪ Note that each attribute is 
correlated with the target! 

▪ What do we split on?



Second Level



Final Tree



Reminder: Overfitting

▪ Overfitting: 
▪ When you stop modeling the patterns in the training data (which 

generalize) 
▪ And start modeling the noise (which doesn’t) 

▪ We had this before: 
▪ Naïve Bayes: needed to smooth 
▪ Perceptron: early stopping



Consider this 
split



Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved 
test set accuracy 

compared with the 
unpruned tree



Regularization

▪ MaxPCHANCE is a regularization parameter 

▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE

IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test

Training



Two Ways of Controlling Overfitting

▪ Limit the hypothesis space 
▪ E.g. limit the max depth of trees 
▪ Easier to analyze 

▪ Regularize the hypothesis selection 
▪ E.g. chance cutoff 
▪ Skip most of the hypotheses unless data is clear 
▪ Usually done in practice



Large Language Model Transformers



Large Language Models

▪ Feature engineering 
▪ Text tokenization 
▪ Word embeddings 

▪ Deep neural networks 
▪ Autoregressive models 
▪ Self-attention mechanisms 
▪ Transformer architecture 

▪ Multi-class classification

▪ Supervised learning 
▪ Self-supervised learning 
▪ Instruction tuning 

▪ Reinforcement learning 
▪ … from human feedback (RLHF) 

▪ Policy search 
▪ Policy gradient methods 

▪ Beam search



Text Tokenization

https://platform.openai.com/tokenizer



Text Tokenization

https://platform.openai.com/tokenizer



Word Embeddings

▪ Input: some text 

▪ “The” 
▪ “ dog” 
▪ “ chased” 
▪ “ the” 

▪ Output: more text 

▪ “ ball” un-embed

embed

embed

embed

embed

tokenize

tokenize

tokenize

tokenize

un-tokenize

[791] 
[5679] 
[62920] 
[279]

[5041]

pr
ed

ic
t

one-hot



What do word embeddings look like?

▪ Features learned in language models:

ig.ft.com/generative-ai



Autoregressive Models

pr
ed

ic
t

“The”
(pad)

(pad)
(pad)

“ dog”

“The”
“ dog”

(pad)
(pad)

“ chased”

“The”
“ dog”

“ chased”
(pad)

“ the”

“The”
“ dog”

“ chased” 
“ the”

“ ball”



Self-Attention Mechanisms

▪ Instead of conditioning on all 
input tokens equally… 

▪ Pay more attention to 
relevant tokens!

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑥6𝒙𝟓

𝑥1 𝒙𝟐
𝒙𝟑 𝑥4 𝑥6

𝑥5



Self-Attention Mechanisms

ig.ft.com/generative-ai



MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight a2a1 a3

• • •

+

x2output

normalize & softmax



MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight

normalize & softmax

a2a1 a3

• • •

+

x4output



Multi-Headed Attention

softmax(k•q)/d • v

[x1 , x2 , x3 , 
…]

MLP

x'

k q v

concatenate

z2 z3

MLP

z1

x'

softmax(k•q)/d • v

MLP

k q v
softmax(k•q)/d • v

[x1 , x2 , x3 , 
…]

MLP

k q v
softmax(k•q)/d • v

MLP

k q v

Single-headed Multi-headed



Multi-Headed Attention
Head 6: previous word

https://github.com/jessevig/bertviz



Multi-Headed Attention

https://github.com/jessevig/bertviz

Head 4: pronoun references



Transformer Architecture

MLP

LayerNorm

LayerNorm

Multi-Headed 
Attention

Transformer 
Block=

Transformer 
Block

Transformer 
Block

Transformer 
Block

…



Transformer Architecture

Transformer 
Block

Tokenize

Embed

Un-embed

Un-tokenize

“The dog chased the”

“ ball”

x N



▪ Pre-Train: train a large model with a lot of data on a self-
supervised task 
▪ Predict next word / patch of image 

▪ Predict missing word / patch of image 

▪ Predict if two images are related (contrastive learning) 

▪ Fine-Tune: continue training the same model on task you care 
about

Pre-Training and Fine-Tuning

1

2



Instruction Tuning

▪                                                      (learns to mimic human-written text) 
▪ Query: “What is population of Berkeley?” 

▪ Human-like completion: “This question always fascinated me!” 

▪   
▪ Query: “What is population of Berkeley?” 

▪ Helpful completion: “It is 117,145 as of 2021 census.” 

▪ Fine-tune on collected examples of helpful human conversations 

▪ Also can use Reinforcement Learning

Task 1 = predict next word

Task 2 = generate helpful text



Beam Search
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