
CS 188: Artificial Intelligence
Course Summary

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Announcements

▪ Final Exam
▪ Thursday 5/15 from 3:00-6:00pm
▪ See Exam Logistics on CS 188 website

▪ Please fill out course evaluations

▪ Oliver’s RRR office hours will be remote
▪ Use CS 188 zoom link
▪ 5/6, 5/8 2:30-4:00
▪ 5/13 3:30-5:00

CS 188: Artificial Intelligence
Review: Markov Decision Processes and RL

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

MDPs/RL vs Human Thought

System II reasoning
(human)

System I reasoning
(human)

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s ∈ S
▪ A set of actions a ∈ A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Grid World Example

Grid World Example

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and
the past are independent

▪ For Markov decision processes, “Markov” means action outcomes
depend only on the current state

▪ This is just like search, where the successor function could only depend
on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

▪ In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

▪ For MDPs, we want an optimal policy π*: S → A
▪ A policy π gives an action for each state
▪ An optimal policy is one that maximizes expected

utility if followed
▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action from a single state only

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

▪ These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π?

▪ Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?
▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?
▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!

Policy Iteration

▪ Alternative approach for optimal values:
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
▪ Repeat steps until policy converges

▪ This is policy iteration
▪ It’s still optimal!
▪ Can converge (much) faster under some conditions

Example: Policy Iteration
Always Go East Improved Policy using Q-Values Improve again – Optimal!

Q-Values for the above policies

Reinforcement Learning
▪ Still assume a Markov decision process (MDP):
▪ A set of states s ∈ S
▪ A set of actions (per state) A
▪ A model T(s,a,s’)
▪ A reward function R(s,a,s’)

▪ Still looking for a policy π(s)

▪ New twist: don’t know T or R
▪ I.e. we don’t know which states are good or what the actions do
▪ Must try out actions and states to learn

▪ Q1: How to learn from things tried? (today, Passive Reinforcement Learning)
▪ Q2: What to decide to try? (Thursday, Active Reinforcement Learning)

Classical Reinforcement Learning Diagram

▪ Basic idea:
▪ Must (learn to) act so as to maximize expected rewards
▪ All learning is based on observed samples of outcomes!

Environmen
t

= MDP

Agent

Actions: a
State: s

Reward: r

Model-Free Reinforcement Learning

Policy Evaluation: Problem Setting

▪ Simplified task: policy evaluation
▪ Input: a fixed policy π(s)
▪ You don’t know the transitions T(s,a,s’)
▪ You don’t know the rewards R(s,a,s’)
▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”
▪ No choice about what actions to take
▪ Just execute the policy and learn from experience
▪ This is NOT offline planning! You actually take actions in the world.

Problems with Direct Policy Evaluation

▪ What’s good about direct evaluation?
▪ It eventually computes the correct average values,

using just sample transitions

▪ What bad about it?
▪ It wastes information about state connections
▪ Each state must be learned separately
▪ So, it takes a long time to learn

Output Values

 A

 B C D

 E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)
▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!
▪ Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

▪ However, if we want to turn values into an optimal policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

Recall: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go
▪ Receive a sample (s,a,s’,r)
▪ Consider your old estimate:
▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:
▪ You have to explore enough
▪ You have to eventually make the learning rate
 small enough
▪ … but not decrease it too quickly
▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration - ε-greedy

▪ Several schemes for forcing exploration
▪ Simplest: random actions (ε-greedy)
▪ Every time step, flip a coin
▪With (small) probability ε, act randomly
▪With (large) probability 1-ε, act on current policy

Exploration Functions
▪ When to explore?

▪ Random actions: explore a fixed amount
▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

▪ Exploration function
▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Q-Learning with Experience Replay

▪ Problem:
▪ Need to repeat same (s,a,s’,r) transitions in environment

many times to propagate values

▪ Solution:
▪ Collect transitions in a memory buffer and “replay” them

to update Q values
▪ Uses memory of transitions only, no need to repeat them in

environment
▪ Evidence of such experience replay in the brain

s,a,s’,r

s,a,s’,r

s,a,s’,r

s,a,s’,r
. . .

Replay Buffer

Update Q

s,a,s’,r

Q-Learning with Experience Replay

▪ At each step:
▪ Receive a sample transition (s,a,s’,r)
▪ Add (s,a,s’,r) to replay buffer
▪ Repeat N times:

▪ Randomly pick transition (s,a,s’,r) from replay buffer
▪ Make sample based on (s,a,s’,r):

▪ Update Q based on picked sample:

s,a,s’,r

s,a,s’,r

s,a,s’,r

s,a,s’,r
. . .

Update Q

s,a,s’,r

Replay Buffer

Feature-Based Representations

▪ Solution: describe a state using a vector of features
(properties) f1, f2, …
▪ Features are functions from states to real numbers (often

in [0,1]) that capture important properties of the state
▪ Example features:

▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2
▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

▪ Using a feature representation f1, f2, … we can write a q function (or value function)
for any state using a few weights w1, w2, … :

▪ Advantage: our experience is summed up in a few powerful numbers w1, w2, …

▪ Disadvantage: states may share features but actually be very different in value!
▪ Ex: these two states would have the same value if we don’t include ghost positions as a feature:

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on: disprefer

all states with that state’s features

▪ Formal justification: online least squares, gradient descent

Exact Q’s

Approximate Q’s

Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best
▪ Q-learning’s priority: get Q-values close (modeling)
▪ Action selection priority: get ordering of Q-values right (prediction)
▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies π that maximize rewards, not the Q values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search
▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function
▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:
▪ How do we tell the policy got better?
▪ Need to run many sample episodes!
▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change multiple
parameters…
▪ Policy Gradient, Proximal Policy Optimization (PPO) are examples

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal Technique

Compute V*, Q*, π* Q-learning

Evaluate a fixed policy π Value Learning

CS 188: Artificial Intelligence

Probability

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Random Variables

▪ A random variable is some aspect of the world about which we
(may) have uncertainty

▪ R = Is it raining?
▪ T = Is it hot or cold?
▪ D = How long will it take to drive to work?
▪ L = Where is the ghost?

▪ We denote random variables with capital letters

▪ Like variables in a CSP, random variables have domains

▪ R in {true, false} (often write as {+r, -r})
▪ T in {hot, cold}
▪ D in [0, ∞)
▪ L in possible locations, maybe {(0,0), (0,1), …}

Probability Distributions

▪ Associate a probability with each value of that random variable

▪ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather:

𝑃 (𝑊)
𝑃 (𝑇)

Probabilistic Models

▪ A probabilistic model is a joint distribution
over a set of random variables

▪ Probabilistic models:
▪ (Random) variables with domains
▪ Assignments are called outcomes
▪ Joint distributions: say whether assignments

(outcomes) are likely
▪ Normalized: sum to 1.0
▪ Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Distribution over T,W

Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate random variables
▪ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

𝑃 (𝑡) = ∑
𝑤

𝑃 (𝑡, 𝑤)

𝑃 (𝑤) = ∑
𝑡

𝑃 (𝑡, 𝑤)

𝑃 (𝑇, 𝑊)
𝑃 (𝑇)

𝑃 (𝑊)

𝑃(𝑋1 = 𝑥1) = ∑
𝑥2

𝑃 (𝑋1 = 𝑥1, 𝑋2 = 𝑥2)

hidden (unobserved) variables

Conditional Probabilities

▪ A simple relation between joint and conditional probabilities
▪ In fact, this is taken as the definition of a conditional probability

P(b)P(a)

P(a,b)

query

evidence

= (proportion of b where a holds)

SELECT the joint
probabilities
matching the

evidence

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the
selection

(make it sum to one)

Inference by Enumeration
▪ General case:

▪ Evidence variables:
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with
multiple query
variables, too

▪ We want:

▪ Step 1: Select the
entries consistent
with the evidence

▪ Step 2: Sum out H to get joint
of Query and evidence

▪ Step 3: Normalize

Inference with Bayes’ Rule

▪ Example: Diagnostic probability from causal probability:

▪ Example:
▪ M: meningitis, S: stiff neck

Example
givens

 P(+m | +s) ≅ 0.008

CS 188: Artificial Intelligence

Bayes’ Nets

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

▪ Two variables are independent if:

▪ This says that their joint distribution factors into a product two simpler
distributions

▪ Another form:

▪ We write:

▪ Independence is a simplifying modeling assumption

▪ Empirical joint distributions: at best “close” to independent

▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

∀𝑥, 𝑦 :𝑃(𝑥, 𝑦) = 𝑃 (𝑥)𝑃 (𝑦)

∀ 𝑥, 𝑦 :𝑃(𝑥 𝑦) = 𝑃 (𝑥)

𝑋 𝑌

Independence

⊨

Conditional Independence
▪ Unconditional (absolute) independence very rare between variables

in the same system (why?)

▪ Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

▪ X is conditionally independent of Y given Z written
 if and only if:

 or, equivalently, if and only if

 or

∀ 𝑥, 𝑦, 𝑧 :𝑃(𝑥, 𝑦 𝑧) = 𝑃 (𝑥 𝑧)𝑃 (𝑦 |𝑧)

∀ 𝑥, 𝑦, 𝑧 :𝑃 (𝑥 |𝑦, 𝑧) = 𝑃 (𝑥 𝑧)

∀ 𝑥, 𝑦, 𝑧 :𝑃 (𝑦 |𝑥, 𝑧) = 𝑃(𝑦 𝑧)

Conditional Independence and the Chain Rule

▪ Chain rule: works in any order of

 Compete Dependency graph: Partial Dependency Graph:

𝑃(𝑋1, 𝑋2, …, 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2 𝑋1)𝑃(𝑋3 𝑋1, 𝑋2)…
𝑋𝑖

𝑋1

𝑋4

𝑋3

𝑋2

𝑃(𝑋4 𝑋1, 𝑋2, 𝑋3)

𝑋1

𝑋4

𝑋3

𝑋2

𝑃(𝑋4 𝑋1, 𝑋3)

𝑃(𝑋3 𝑋1, 𝑋2) 𝑃(𝑋3 𝑋1)

𝑃(𝑋2 𝑋1) 𝑃(𝑋2 𝑋1)

𝑃(𝑋1) 𝑃(𝑋1)

Conditional Independence and the Chain Rule

▪ Chain rule:

 Partial Dependency graph: Independences from the Graph:

𝑃(𝑋1, 𝑋2, …, 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2 𝑋1)𝑃(𝑋3 𝑋1, 𝑋2)…

𝑋1

𝑋4

𝑋3

𝑋2

𝑃(𝑋4 𝑋1, 𝑋3)

𝑃(𝑋3 𝑋1)

𝑃(𝑋2 𝑋1)

𝑃(𝑋1)
𝑋1

𝑋4

𝑋3

𝑋2

𝑋4 𝑋2 |𝑋1, 𝑋3⊨

𝑋3 𝑋2 |𝑋1⊨

Example: Coin Flips

▪ N independent coin flips

▪ No interactions between variables: absolute independence

X1 X2 Xn

Example: Alarm Network

▪ Variables
▪ B: Burglary
▪ A: Alarm goes off
▪ M: Mary calls
▪ J: John calls
▪ E: Earthquake!

B

A

MJ

E

Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ

Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ

Conditional Independence

▪ X and Y are independent if

▪ X and Y are conditionally independent given Z

▪ (Conditional) independence is a property of a distribution

▪ Example:

D-separation: Overview

▪ D-separation:
▪ a condition / algorithm for answering conditional independence

queries from just studying the graph

▪ How:
▪ Study independence properties for triples

▪ Analyze complex cases as composition of triples

Recap of Triples

Active Triples Inactive Triples

Causal Chain:

Common Cause:

Common Effect (“v-structure”)

D-Separation
▪ A path is active if each (overlapping) triple is active:

Note: e.g. for a path A – B – C – D – E, the triples are:

A – B – C, B – C – D, C – D – E

Note: all it takes to block a path is a single inactive segment

▪ Are X and Y “D-separated” given evidence variables {Z}?

▪ Consider all (undirected) paths from X to Y

▪ If none of the paths are active, then X and Y are D-separated given {Z}
▪ On the other hand, if there is at least one active path, then X and Y are not D-separated given {Z}

▪ Independence and D-separation:
X and Y are guaranteed conditionally independent given {Z}
IF AND ONLY IF
X and Y are d-separated given {Z}

 just need to check the graph

Active Triples Inactive Triples

Example

Yes Yes R

T

B

T’

Red = Nodes are conditionally independent given the evidence
Blue = Nodes are d-separated given the evidence

No ??

No ??

▪ Examples:

▪ Posterior probability

▪ Most likely explanation:

Inference

▪ Inference: calculating some useful
quantity from a joint probability
distribution

Inference by Enumeration
▪ General case:

▪ Evidence variables:
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with
multiple query
variables, too

▪ We want:

▪ Step 1: Select the
entries consistent
with the evidence

▪ Step 2: Sum out H to get joint
of Query and evidence

▪ Step 3: Normalize

Inference by Enumeration in Bayes’ Net
▪ Given unlimited time, inference in BNs is easy

▪ Reminder of inference by enumeration by example:
B E

A

MJ

Factor Summary

▪ In general, when we write P(Y1 … YN | X1 … XM)

▪ It is a “factor,” a multi-dimensional array

▪ Its values are P(y1 … yN | x1 … xM)

▪ Any assigned (=lower-case) X or Y is a dimension selected from the array

Inference by Enumeration: Procedural Outline

▪ Track objects called factors
▪ Initial factors are local CPTs (one per node)

▪ Any known values are selected
▪ E.g. if we know , the initial factors are

▪ Procedure: Join all factors, eliminate all hidden variables, normalize

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

Operation 1: Join Factors

▪ First basic operation: joining factors

▪ Combining factors:
▪ Just like a database join
▪ Get all factors over the joining variable
▪ Build a new factor over the union of the variables involved

▪ Example: Join on R

▪ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T

General Variable Elimination

▪ Query:

▪ Start with initial factors:
▪ Local CPTs (but instantiated by evidence)

▪ While there are still hidden variables (not Q or
evidence):
▪ Pick a hidden variable Hi
▪ Join all factors mentioning Hi

▪ Eliminate (sum out) Hi

▪ Join all remaining factors and normalize

Sampling

▪ Sampling is a lot like repeated simulation

▪ Predicting the weather, basketball games, …

▪ Basic idea

▪ Draw N samples from a sampling distribution S
▪ Compute an approximate posterior probability
▪ Show this converges to the true probability P

▪ Why sample?
▪ Learning: get samples from a distribution

you don’t know
▪ Inference: getting a sample is faster than

computing the right answer (e.g. with
variable elimination)

Sampling

▪ Sampling from given distribution

▪ Step 1: Get sample u from uniform
distribution over [0, 1)
▪ E.g. random() in python

▪ Step 2: Convert this sample u into an
outcome for the given distribution by
having each target outcome associated
with a sub-interval of [0,1) with sub-
interval size equal to probability of the
outcome

▪ Example

▪ If random() returns u = 0.83,
then our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

Prior Sampling

▪ For i = 1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ Return (x1, x2, …, xn)

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…

Example

▪ We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r, -w
 +c, -s, +r, +w
 -c, -s, -r, +w

▪ If we want to know P(W)
▪ We have counts <+w:4, -w:1>
▪ Normalize to get P(W) = <+w:0.8, -w:0.2>
▪ This will get closer to the true distribution with more samples
▪ Can estimate anything else, too
▪ What about P(C | +w)? P(C | +r, +w)? P(C | -r, -w)?
▪ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C

Reflections on Prior Sampling

Pros:
▪ Much simpler than enumeration or variable elimination: We only ever need samples

(scalar values) for each variable, not probabilities.

▪ Therefore we only ever need k rows from one CPT table to sample a variable that
has k possible values. No potentially exponential increase with number of variables.

▪ Therefore it doesn’t matter as much how sparse the graph is: we still only need k
rows from each CPT table, regardless of how many rows (how many parents) it has.

Cons:
▪ So far we can’t deal with evidence.
▪ We don’t get exact values, and its expensive to get accurate estimates of small

probabilities. E.g. estimating a 0.001 probability with 1% relative error requires
around 107 samples.

𝑋

 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r, -w
 +c, -s, +r, +w
 -c, -s, -r, +w

Rejection Sampling

▪ Let’s say we want P(C)
▪ No point keeping all samples around
▪ Just tally counts of C as we go

▪ Let’s say we want P(C | +s)
▪ Same thing: tally C outcomes, but ignore

(reject) samples which don’t have S=+s
▪ This is called rejection sampling
▪ It is also consistent for conditional

probabilities (i.e., correct in the limit)

S R

W

C

Rejection Sampling
▪ Input: evidence instantiation

▪ For i = 1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ If xi not consistent with evidence
▪ Reject: return – no sample is generated in this cycle

▪ Return (x1, x2, …, xn)

Reflections on Rejection Sampling

Pros:
▪ Inherits all the pros of prior sampling.
▪ Now we can deal with evidence.
Cons:
▪ Dealing with evidence can be very costly. Our rejection rate is 1- the marginal

probability of the evidence, and getting N good samples requires taking N/p samples
overall, where p is the marginal probability of the evidence.

▪ We still don’t get exact values, and its still expensive to get accurate estimates of
small probabilities. E.g. estimating a 0.001 probability with 1% relative error requires
around 107 samples, multiplied by 1/marginal probability of the evidence.

Likelihood Weighting

Likelihood Weighting
▪ Input: evidence instantiation

▪ w = 1.0

▪ for i = 1, 2, …, n

▪ if Xi is an evidence variable
▪ Xi = observation xi for Xi
▪ Set w = w * P(xi | Parents(Xi))

▪ else
▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w

Likelihood Weighting Estimates

▪ We use the weights to estimate probabilities:

Where is the weight of a sample , and is true if in sample .

𝑝(𝑥+) ≈
∑𝑠∈{𝑠 𝑥+(𝑠)} 𝑤𝑠

∑𝑠 𝑤𝑠

𝑤𝑠 𝑠 𝑥 + (𝑠) 𝑋 = 𝑥+ 𝑠

Likelihood Weighting

▪ Likelihood weighting is good
▪ We have taken evidence into account as we generate

the sample
▪ E.g. here, W’s value will get picked based on the

evidence values of S, R
▪ More of our samples will reflect the state of the world

suggested by the evidence

▪ Likelihood weighting doesn’t solve all our
problems
▪ Evidence influences the choice of downstream

variables, but not upstream ones (C isn’t more
likely to get a value matching the evidence)

▪ We would like to consider evidence when we
sample every variable (leads to Gibbs sampling)

S R

W

C

Gibbs Sampling

▪ Procedure: keep track of a full instantiation x1, x2, …, xn. Start with an arbitrary
instantiation consistent with the evidence. Sample one variable at a time, conditioned
on all the rest, but keep evidence fixed. Keep repeating this for a long time.

▪ Property: in the limit of repeating this infinitely many times the resulting samples come
from the correct distribution (i.e. conditioned on evidence).

▪ Rationale: both upstream and downstream variables condition on evidence.

▪ In contrast: likelihood weighting only conditions on upstream evidence, and hence
weights obtained in likelihood weighting can sometimes be very small. Sum of weights
over all samples is indicative of how many “effective” samples were obtained, so we
want high weight.

Gibbs Sampling: Conditioning Variables

▪ No! Remember that the node equations for children depend on their other
parents. The complete set is called the Markov Blanket of the node, and
includes the other parents of the sampled node’s children (orange):

Gibbs Sampling: Node probability

▪ To sample, we first compute a factor that includes all node CPTs that depend on A.

▪ Then we normalize it to get a conditional probability for A.

▪ Finally we sample to get a new value for A.

 multiply CPTs with A:

 which is the factor:
 normalize (sum over A and divide):

 divide:

 take a sample of A from this distribution.

𝑝(𝐴 𝑏, 𝑐) 𝑝(𝑓 𝐴, 𝑑) 𝑝(𝑔 |𝐴, 𝑒)

𝑝(𝐴, 𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒)

𝑍 = ∑
𝑎

𝑃 (𝑎, 𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒) = 𝑃 (𝑓, 𝑔 |𝑏, 𝑐, 𝑑, 𝑒)

𝑝(𝐴 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) = 𝑝(𝐴, 𝑓, 𝑔 𝑏, 𝑐, 𝑑, 𝑒)/𝑍

B C

D E

F G

▪ Step 2: Initialize other variables
▪ Randomly

Gibbs Sampling Example with Evidence

▪ Step 1: Fix evidence
▪ R = +r

▪ Steps 3: Repeat
▪ Choose a non-evidence variable X
▪ Resample X from P(X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

Eventually: Compute probabilities with counts over many samples, e.g. , , 𝑝(𝑆 | + 𝑟) 𝑝(𝑊 | + 𝑟) 𝑝(𝐶, 𝑊 | + 𝑟)

Reflections on Gibbs Sampling
Pros:

▪ Similar to other sampling methods: Only needs k rows from each CPT table for a
variable X with k values.

▪ It also doesn’t matter how sparse the graph is, in fact Gibbs sampling typically
converges faster on denser graphs, because it mixes faster.

▪ Samples are unweighted, and come from the exact posterior probability conditioned on
the evidence (eventually). So estimates can be fairly fast (modulo mixing).

Cons:

▪ There is a “warm-up” period for the sampler to reach the final distribution.

▪ Because samples are correlated, need more of them to get estimates at a given
accuracy compared to other sampling methods.

▪ Both of the above depend on “mixing time,” for which smaller is better.
There is much theory and many techniques to improve Gibbs sampling.

Decision Networks

Decision Networks

Forecast

Umbrella

U

(future)
Weather

Decision Networks

Forecast

Umbrella

U

▪ New node types:

▪ Chance nodes (circular or oval,
just like BNs)

▪ Actions (rectangles, like actions
in MDPs)

▪ Utility node (diamond, like
rewards in MDPs)

(future)
Weather

Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected
utility by averaging over C, conditioned on B.

▪ Then we take the maximum over A for each B.
▪ Finally we can average over B to get the MEU.

C

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

U

A

B

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

Compute expected utility over C | B

Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected
utility by averaging over C, conditioned on B.

▪ Then we take the maximum over A for each B.
▪ Finally we can average over B to get the MEU.

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

U

A

B

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

B MEU(B)
+b 4.1
-b 0.4

Compute expected utility over C | B
Choose best A | B

Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected
utility by averaging over C, conditioned on B.

▪ Then we take the maximum over A for each B.
▪ Finally we can average over B to get the MEU.

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

UB

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

B MEU(B)
+b 4.1
-b 0.4

MEU = 3.4

Compute expected utility over C | B
Choose best A | B

Compute expected utility over B

Maximum Expected Utility (MEU)

▪ For each state B and action A, we compute expected
utility by averaging over C, conditioned on B.

▪ Then we take the maximum over A for each B.
▪ Finally we can average over B to get the MEU.

B A C U(A,C)
+b +a +c 5
+b +a -c 3.2
+b -a +c -1
+b -a -c -4
… … … …

U

B A U(A,B)
+b +a 4.1
+b -a -2.3
-b +a 0.4
-b -a -1.5

B MEU(B)
+b 4.1
-b 0.4

MEU = 3.4

Compute expected utility over C | B
Choose best A | B

Compute expected utility over B

Value of Information
▪ Value of Information is the difference in MEU between networks with

different action conditioning (information).

Forecast

Umbrella

U

(future)
Weather

Forecast

Umbrella

U

(future)
Weather

𝑀𝐸𝑈(∅) ≤ 𝑀𝐸𝑈(𝐹)

Forecast

Umbrella

U

(future)
Weather

≤ 𝑀𝐸𝑈(𝐹, 𝑊)

Difference = 𝑉𝑜𝐼(𝐹)
Difference = 𝑉𝑜𝐼(𝐹, 𝑊)

Perfect
Information
(Economics)

Difference = 𝑉𝑜𝐼(𝑊 |𝐹)

Value of Information/VPI
▪ Value of Information is the difference in MEU between networks with

different action conditioning (information).

Forecast

Umbrella

U

(future)
Weather

Forecast

Umbrella

U

(future)
Weather

𝑀𝐸𝑈(∅) = 70 ≤ 𝑀𝐸𝑈(𝐹) = 73.4

Forecast

Umbrella

U

(future)
Weather

≤ 𝑀𝐸𝑈(𝐹, 𝑊) = 91

Difference = 𝑉𝑜𝐼(𝐹) = 3.4
Difference = 𝑉𝑜𝐼(𝐹, 𝑊) = 21

Perfect
Information
(Economics)

Difference = 𝑉𝑜𝐼(𝑊 |𝐹) = 17.6

 is value of knowing E’ given evidence e.
▪ Nonnegative:

▪ Nonadditive (think of observing Ej twice)

▪ Order-independent

𝑉𝑃𝐼(𝐸′ |𝑒)

VPI Properties

POMDPs

▪ MDPs have:
▪ States S
▪ Actions A
▪ Transition function P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’)

▪ POMDPs add:
▪ Observations O
▪ Observation function P(o|s) (or O(s,o))

▪ POMDPs are MDPs over belief
 states b (distributions over S)

▪ We’ll be able to say more in a few lectures

a

s

s, a

s,a,s’
s'

a

b

b, a

 o
b'

CS 188: Artificial Intelligence

Hidden Markov Models

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models

▪ Markov chains OK for games, weak for real robots

▪ Need observations to update your beliefs

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X
▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X5X2X1 X3 X4

Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪ An HMM is defined by:
▪ Initial distribution:
▪ Transitions:
▪ Emissions:

EmissionsTransitions

Conditional Independence

▪ HMMs have two important independence properties:

▪ Markov hidden process: future depends on past via the present

▪ Current observation independent of all else given current state

▪ Does this mean that evidence variables are guaranteed to be independent?

▪ No, they are correlated by the hidden state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Inference: Base Cases

X2X1
E1

X1

Passage of Time: Observation:

Two Steps: Passage of Time + Observation

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Particle Filtering

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Typically, there are multiple samples per time step
▪ Particles do not interact with each other, and computing

time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

1 2 3

3

2

1

Particle Filtering: Passage of Time

▪ Each particle is moved by sampling its next
position from the transition model

▪ This is like prior sampling – samples’ frequencies
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and

after (consistent)

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

1 2 3

3

2

1

▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight
samples based on the evidence

▪ As before, the probabilities don’t sum to one,
since all have been down-weighted (in fact they
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

Recall: Sampling from a Set

▪ Sampling from given distribution

▪ Step 1: Get sample u from uniform
distribution over [0, 1)
▪ E.g. random() in python

▪ Step 2: Convert this sample u into an
outcome for the given distribution by
having each target outcome associated
with a sub-interval of [0,1) with sub-
interval size equal to probability of the
outcome

▪ Example

▪ If random() returns u = 0.83,
then our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

Particle Filtering: Resample

▪ Rather than tracking weighted samples, we
resample

▪ N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the
distribution

▪ Now the update is complete for this time step,
continue with the next one

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

1 2 3

3

2

1

1 2 3

3

2

1

Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit distribution

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Elapse Weight Resample

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

 Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

1 2 3

3

2

1

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)
▪ We want to track multiple variables over time, using multiple

sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

[Demo: pacman sonar ghost DBN model (L15D6)]

Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed

▪ Online belief updates: Eliminate all variables from the previous time step; store factors for current
time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b

DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3)

▪ Elapse time: Sample a successor for each particle

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample

▪ Likelihood: P(E1
a |G1

a) * P(E1
b |G1

b)

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood

CS 188: Artificial Intelligence

Search

Spring 2025

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent that

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless

of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the “effective depth”

is roughly C*/ε

▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost is positive,

yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2
c ≤ 1

CS 188: Artificial Intelligence

Informed Search

Spring 2025

University of California, Berkeley

Greedy Search

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)
▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c
h=7

3

e h=1
1

Example: Teg Grenager

S

a

b ed

G

f=0+6

f = 1+5

f = 2+6 f = 4+2

f = 6+0

f = 9+1

Properties of A*

…
b

…
b

Uniform-Cost A*

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

4
15

Comparison

Greedy Uniform Cost A*

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

CS 188: Artificial Intelligence
Constraint Satisfaction Problems

John Canny, Oliver Grillmeyer

University of California, Berkeley

Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different colors

▪ Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

Constraint Graphs

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to reducing

domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict with previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
 is called backtracking search (not the best name)

▪ Can solve n-queens for n ≈ 25

Backtracking Example

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:
▪ Which variable should be assigned next?
▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options
▪ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

CS 188: Artificial Intelligence
Constraint Satisfaction Problems II

Instructors: John Canny and Oliver Grillmeyer

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):
▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value
▪ I.e., the one that rules out the fewest values in the

remaining variables
▪ Note that it may take some computation to determine

this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Summary: CSPs

CSPs are a special kind of search problem:
States are partial assignments
Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
Ordering
Filtering
Structure

Iterative min-conflicts is often effective in practice

Hill Climbing

Simple, general idea:
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s bad about this approach?
Complete?
Optimal?

What’s good about it?

Hill Climbing Diagram

Beam Search

Like greedy hillclimbing search, but keep K states at all
times:

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?
Why do we still need optimal methods?

Greedy Search Beam Search

CS 188: Artificial Intelligence
Game Trees: Adversarial Search

Instructors: John Canny & Oliver Grillmeyer
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).
[Updated slides from: Stuart Russell and Dawn Song]

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on outcomes)
▪ Pure competition:

▪ One maximizes, the other minimizes

▪ General-Sum Games
▪ Agents have independent utilities (values on outcomes)
▪ Cooperation, indifference, competition, shifting alliances,

and more are all possible
▪ Team Games

▪ Common payoff for all team members

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8+4-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax Example

12 8 5 23 2 144 6

v=3

v=3

v=2 v=14v=14 5v=14 5 2

Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first

v=3

v=3

v=2 v=2

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ E.g. f1(s) = (num white queens – num black queens), etc.
▪ Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Depth Matters

▪ Evaluation functions are always
imperfect

▪ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

▪ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Summary

▪ Games are decision problems with multiple agents
▪ Huge variety of issues and phenomena depending on details of interactions and payoffs

▪ For zero-sum games, optimal decisions defined by minimax
▪ Implementable as a depth-first traversal of the game tree
▪ Time complexity O(bm), space complexity O(bm)

▪ Alpha-beta pruning
▪ Preserves optimal choice at the root
▪ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
▪ Time complexity drops to O(bm/2) with ideal node ordering

▪ Exact solution is impossible even for “small” games like chess

CS 188: Artificial Intelligence
Uncertainty and Utilities

Instructors: John Canny & Oliver Grillmeyer

University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

▪ As we get more evidence, probabilities may change:
▪ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

▪ The expected value of a function of a random variable is the
average, weighted by the probability distribution over
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax
▪ Environment is an

extra “random
agent” player that
moves after each
min/max agent

▪ Each node
computes the
appropriate
combination of its
children

Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Maximum Expected Utility

▪ Why should we average utilities? Why not minimax?

▪ Principle of maximum expected utility:
▪ A rational agent should chose the action that maximizes its expected

utility, given its knowledge

▪ Questions:
▪ Where do utilities come from?
▪ How do we know such utilities even exist?
▪ How do we know that averaging even makes sense?
▪ What if our behavior (preferences) can’t be described by utilities?

Preferences

▪ An agent must have preferences among:
▪ Prizes: A, B, etc.
▪ Lotteries: situations with uncertain prizes

▪ Notation:
▪ Preference:
▪ Indifference:

A B

p 1-p

 A Lottery A Prize

A

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

CS 188: Artificial Intelligence
Naïve Bayes

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Model-Based Classification

▪ Model-based approach
▪ Build a model (e.g. Bayes’ net) where

both the output label and input
features are random variables

▪ Instantiate any observed features
▪ Query for the distribution of the label

conditioned on the features

▪ Challenges
▪ What structure should the BN have?
▪ How should we learn its parameters?

Inference for Naïve Bayes

▪ Goal: compute posterior distribution over label variable Y
▪ Step 1: get joint probability of label and evidence for each label

▪ Step 2: sum to get probability of evidence

▪ Step 3: normalize by dividing Step 1 by Step 2

+

Naïve Bayes for Text

▪ Bag-of-words Naïve Bayes:
▪ Features: Wi is the word at position i
▪ As before: predict label conditioned on feature variables (spam vs. ham)
▪ As before: assume features are conditionally independent given label
▪ New: each Wi is identically distributed

▪ Generative model:

▪ “Tied” distributions and bag-of-words
▪ Usually, each variable gets its own conditional probability distribution P(F|Y)
▪ In a bag-of-words model

▪ Each position is identically distributed
▪ All positions share the same conditional probs P(W|Y)
▪ Why make this assumption?

▪ Called “bag-of-words” because model is insensitive to word order or reordering

Word at position
i, not ith word in
the dictionary!

Example: Spam Filtering

▪ Model:

▪ What are the parameters?

▪ Where do these tables come from?

the : 0.0156
to : 0.0153
and : 0.0115
of : 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075
...

the : 0.0210
to : 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a : 0.0100
...

ham : 0.66
spam: 0.33

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4

Gary 0.00002 0.00021 -11.8 -8.9

would 0.00069 0.00084 -19.1 -16.0

you 0.00881 0.00304 -23.8 -21.8

like 0.00086 0.00083 -30.9 -28.9

to 0.01517 0.01339 -35.1 -33.2

lose 0.00008 0.00002 -44.5 -44.0

weight 0.00016 0.00002 -53.3 -55.0

while 0.00027 0.00027 -61.5 -63.2

you 0.00881 0.00304 -66.2 -69.0

sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9

Important Concepts

▪ Data: labeled instances (e.g. emails marked spam/ham)
▪ Training set
▪ Held out set
▪ Test set

▪ Features: attribute-value pairs which characterize each x

▪ Experimentation cycle
▪ Learn parameters (e.g. model probabilities) on training set
▪ (Tune hyperparameters on held-out set)
▪ Compute accuracy of test set
▪ Very important: never “peek” at the test set!

▪ Evaluation (many metrics possible, e.g. accuracy)
▪ Accuracy: fraction of instances predicted correctly

▪ Overfitting and generalization
▪ Want a classifier which does well on test data
▪ Overfitting: fitting the training data very closely, but not generalizing

well
▪ We’ll investigate overfitting and generalization formally in a few lectures

Training
Data

Held-Out
Data

Test
Data

Confusion Matrix

▪ Used to show space of actual and predicted values

From evidentlyai.com
From Wikipedia

Performance Metrics

▪ Accuracy
▪ Number of correct predictions from the entire data set:

(TP + TN) / (TP + FP + TN + FN)
▪ Precision
▪ Number of correct positive predictions from total positive predictions:

TP / (TP + FP)

▪ Recall
▪ Number of correct positive predictions from the actual positive samples:

TP / (TP + FN)

▪ F-score
▪ Harmonic mean of Precision and Recall: 2TP / (2TP + FP + FN)

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Parameter Estimation

▪ Estimating the distribution of a random variable

▪ Elicitation: ask a human (why is this hard?)

▪ Empirically: use training data (learning!)
▪ E.g.: for each outcome x, look at the empirical rate of that value:

▪ This is the estimate that maximizes the likelihood of the data

r r b

r b b

r bb
r

b
b

r b
b

r

b

b

Laplace Smoothing

▪ Laplace’s estimate:
▪ Pretend you saw every outcome once

more than you actually did

▪ Can derive this estimate with
Dirichlet priors (see cs281a)

r r b

Summary

▪ Bayes rule lets us do diagnostic queries with causal probabilities

▪ The naïve Bayes assumption takes all features to be independent given the class label

▪ We can build classifiers out of a naïve Bayes model using training data

▪ Smoothing estimates is important in real systems

CS 188: Artificial Intelligence
Perceptrons and Logistic Regression

Instructors: John Canny & Oliver Grillmeyer —- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?

Weights
▪ Binary case: compare features to a weight vector
▪ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Binary Decision Rule

▪ In the space of feature vectors
▪ Examples are points
▪ Any weight vector is a hyperplane
▪ One side corresponds to Y=+1
▪ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Learning: Binary Perceptron

▪ Start with weights = 0
▪ For each training instance:
▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

▪ Start with all weights = 0
▪ Pick up training examples one by one
▪ Predict with current weights

▪ If correct, no change!
▪ If wrong: lower score of wrong answer,

raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

Sample A
BIAS : 1
win : 1
game : 0
vote : 1
the : 1

Sample B
BIAS : 1
win : 1
game : 0
vote : 0
the : 1

Sample C
BIAS : 1
win : 1
game : 1
vote : 0
the : 1

 fA
 1
 1
- 0 =
 1
 1

wS
 0
-1
 0
-1
-1
...

 fA
 1
 1
+ 0 =
 1
 1

wP
 1
 1
 0
 1
 1
...

wS . fA = 1; wP . fA = 0; wT . fA = 0

wS . fB = -2; wP . fB = 3; wT . fB = 0

wS . fC = -2; wP . fC = 3; wT . fC = 0

 fC
 1
 1
+ 1 =
 0
 1

wS
 1
 0
 1
-1
 0
...

 fC
 1
 1
- 1 =
 0
 1

wP
 0
 0
-1
 1
 0
...

Properties of Perceptrons

▪ Separability: true if some parameters get the training set
perfectly correct

▪ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

▪ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1

How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive want probability going to 1

▪ If very negative want probability going to 0

▪ Sigmoid function

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

1-D Optimization

▪ Could evaluate and
▪ Then step in best direction

▪ Or, evaluate derivative:

▪ Tells which direction to step into

Gradient Ascent

▪ Perform update in uphill direction for each coordinate

▪ The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

▪ E.g., consider:

▪ Updates: ▪ Updates in vector notation:

 with: = gradient

Optimization Procedure: Gradient Ascent

▪ init

▪ for iter = 1, 2, …

▪ : learning rate --- hyperparameter that needs to be chosen
carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes about 0.1 – 1 %

Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …
▪ pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init

▪ for iter = 1, 2, …
▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

Multi-class Logistic Regression

▪ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x…

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

▪ Much larger weight vector to learn

▪ Keep training (adjust weights with gradient ascent) until we meet our
performance criteria or validation set performance starts decreasing

Summary of Key Ideas
▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
▪ Take step in the gradient direction
▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression
▪ Now also many more layers before this last layer

▪ = computing the features
▪ the features are learned rather than hand-designed

▪ Universal function approximation theorem
▪ If neural net is large enough
▪ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
▪ But remember: need to avoid overfitting / memorizing the training data early stopping!

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

CS 188: Artificial Intelligence

Neural Nets (wrap-up) and Decision Trees

Instructors: John Canny and Oliver Grillmeyer --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Object Detection

Features and Generalization

Image HoG

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Inductive Learning (Science)

▪ Simplest form: learn a function from examples
▪ A target function: g
▪ Examples: input-output pairs (x, g(x))
▪ E.g. x is an email and g(x) is spam / ham
▪ E.g. x is a house and g(x) is its selling price

▪ Problem:
▪ Given a hypothesis space H
▪ Given a training set of examples xi
▪ Find a hypothesis h(x) such that h ~ g

▪ Includes:
▪ Classification (outputs = class labels)
▪ Regression (outputs = real numbers)

▪ How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

▪ Curve fitting (regression, function approximation):

▪ Consistency vs. simplicity
▪ Ockham’s razor

Decision Trees

Features

▪ Features, aka attributes
▪ Sometimes: TYPE=French
▪ Sometimes: fTYPE=French(x) = 1

Decision Trees

▪ Compact representation of a function:
▪ Truth table
▪ Conditional probability table
▪ Regression values

▪ True function
▪ Realizable: in H

Choosing an Attribute

▪ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or
“all negative”

▪ So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out

Entropy

▪ General answer: if prior is <p1,…,pn>:
▪ Information is the expected code length

▪ Also called the entropy of the distribution
▪ More uniform = higher entropy
▪ More values = higher entropy
▪ More peaked = lower entropy
▪ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit

Information Gain

▪ Back to decision trees!
▪ For each split, compare entropy before and after

▪ Difference is the information gain
▪ Problem: there’s more than one distribution after split!

▪ Solution: use expected entropy, weighted by the number of
examples

Example: Learned Tree

▪ Decision tree learned from these 12 examples:

▪ Substantially simpler than “true” tree
▪ A more complex hypothesis isn't justified by data

▪ Also: it’s reasonable, but wrong

Example: Miles Per Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Find the First Split

▪ Look at information gain for
each attribute

▪ Note that each attribute is
correlated with the target!

▪ What do we split on?

Second Level

Final Tree

Reminder: Overfitting

▪ Overfitting:
▪ When you stop modeling the patterns in the training data (which

generalize)
▪ And start modeling the noise (which doesn’t)

▪ We had this before:
▪ Naïve Bayes: needed to smooth
▪ Perceptron: early stopping

Consider this
split

Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved
test set accuracy

compared with the
unpruned tree

Regularization

▪ MaxPCHANCE is a regularization parameter

▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE

IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test

Training

Two Ways of Controlling Overfitting

▪ Limit the hypothesis space
▪ E.g. limit the max depth of trees
▪ Easier to analyze

▪ Regularize the hypothesis selection
▪ E.g. chance cutoff
▪ Skip most of the hypotheses unless data is clear
▪ Usually done in practice

Large Language Model Transformers

Large Language Models

▪ Feature engineering
▪ Text tokenization
▪ Word embeddings

▪ Deep neural networks
▪ Autoregressive models
▪ Self-attention mechanisms
▪ Transformer architecture

▪ Multi-class classification

▪ Supervised learning
▪ Self-supervised learning
▪ Instruction tuning

▪ Reinforcement learning
▪ … from human feedback (RLHF)

▪ Policy search
▪ Policy gradient methods

▪ Beam search

Text Tokenization

https://platform.openai.com/tokenizer

Text Tokenization

https://platform.openai.com/tokenizer

Word Embeddings

▪ Input: some text

▪ “The”
▪ “ dog”
▪ “ chased”
▪ “ the”

▪ Output: more text

▪ “ ball” un-embed

embed

embed

embed

embed

tokenize

tokenize

tokenize

tokenize

un-tokenize

[791]
[5679]
[62920]
[279]

[5041]

pr
ed

ic
t

one-hot

What do word embeddings look like?

▪ Features learned in language models:

ig.ft.com/generative-ai

Autoregressive Models

pr
ed

ic
t

“The”
(pad)

(pad)
(pad)

“ dog”

“The”
“ dog”

(pad)
(pad)

“ chased”

“The”
“ dog”

“ chased”
(pad)

“ the”

“The”
“ dog”

“ chased”
“ the”

“ ball”

Self-Attention Mechanisms

▪ Instead of conditioning on all
input tokens equally…

▪ Pay more attention to
relevant tokens!

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑥6𝒙𝟓

𝑥1 𝒙𝟐
𝒙𝟑 𝑥4 𝑥6

𝑥5

Self-Attention Mechanisms

ig.ft.com/generative-ai

MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight a2a1 a3

• • •

+

x2output

normalize & softmax

MLPMLP MLP

k2 q2 v2

x2

s2

•

Implementing Self-Attention

input x1

multi-layer perceptron MLP MLP MLP

key query value k1 q1 v1

MLP MLP MLP

k3 q3 v3

x3

s3

••

s1score

attention weight

normalize & softmax

a2a1 a3

• • •

+

x4output

Multi-Headed Attention

softmax(k•q)/d • v

[x1 , x2 , x3 ,
…]

MLP

x'

k q v

concatenate

z2 z3

MLP

z1

x'

softmax(k•q)/d • v

MLP

k q v
softmax(k•q)/d • v

[x1 , x2 , x3 ,
…]

MLP

k q v
softmax(k•q)/d • v

MLP

k q v

Single-headed Multi-headed

Multi-Headed Attention
Head 6: previous word

https://github.com/jessevig/bertviz

Multi-Headed Attention

https://github.com/jessevig/bertviz

Head 4: pronoun references

Transformer Architecture

MLP

LayerNorm

LayerNorm

Multi-Headed
Attention

Transformer
Block=

Transformer
Block

Transformer
Block

Transformer
Block

…

Transformer Architecture

Transformer
Block

Tokenize

Embed

Un-embed

Un-tokenize

“The dog chased the”

“ ball”

x N

▪ Pre-Train: train a large model with a lot of data on a self-
supervised task
▪ Predict next word / patch of image

▪ Predict missing word / patch of image

▪ Predict if two images are related (contrastive learning)

▪ Fine-Tune: continue training the same model on task you care
about

Pre-Training and Fine-Tuning

1

2

Instruction Tuning

▪ (learns to mimic human-written text)
▪ Query: “What is population of Berkeley?”

▪ Human-like completion: “This question always fascinated me!”

▪
▪ Query: “What is population of Berkeley?”

▪ Helpful completion: “It is 117,145 as of 2021 census.”

▪ Fine-tune on collected examples of helpful human conversations

▪ Also can use Reinforcement Learning

Task 1 = predict next word

Task 2 = generate helpful text

Beam Search

7

9

8

7

9

9

6

7

7

9

10

3

8

10

5

9

9

7

9

6

9

8

7

7

9

7

8

9

10

3

3

9

8

8

7

6

t=0

t=0

t=0

t=0

9

9

8

7

t=1

t=1

t=1

t=1

10

9

9

8
t=2

t=2

t=2

t=2

8

8

7

6

t=0

t=0

t=0

t=0

9

9

9

8

t=1

t=1

t=1

t=1

10

10

9

9

t=2

t=2

t=2

t=2

Parallel search Beam search

