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Q1. Probability
(a) For the following questions, you will be given a set of probability tables and a set of conditional indepen-

dence assumptions. Given these tables and independence assumptions, write an expression for the requested
probability tables. Keep in mind that your expressions cannot contain any probabilities other than the given
probability tables. If it is not possible, mark “Not possible.”

(i) Using probability tables P(A),P(A | C),P(B | C),P(C | A,B) and no conditional independence assump-
tions, write an expression to calculate the table P(A,B | C).

P(A,B | C) = # Not possible.

(ii) Using probability tables P(A),P(A | C),P(B | A),P(C | A,B) and no conditional independence assump-
tions, write an expression to calculate the table P(B | A,C).

P(B | A,C) = # Not possible.

(iii) Using probability tables P(A | B),P(B),P(B | A,C),P(C | A) and conditional independence assump-
tion A ⊥⊥ B, write an expression to calculate the table P(C).

P(C) = # Not possible.

(iv) Using probability tables P(A | B,C),P(B),P(B | A,C),P(C | B,A) and conditional independence as-
sumption A ⊥⊥ B | C, write an expression for P(A,B,C).

P(A,B,C) = # Not possible.

(b) For each of the following equations, select the minimal set of conditional independence assumptions necessary
for the equation to be true.

(i) P(A,C) = P(A | B) P(C)

2 A ⊥⊥ B
2 A ⊥⊥ B | C
2 A ⊥⊥ C
2 A ⊥⊥ C | B

2 B ⊥⊥ C
2 B ⊥⊥ C | A
2 No independence assumptions needed.

(ii) P(A | B,C) = P(A) P(B|A) P(C|A)
P(B|C) P(C)

2 A ⊥⊥ B
2 A ⊥⊥ B | C
2 A ⊥⊥ C
2 A ⊥⊥ C | B

2 B ⊥⊥ C
2 B ⊥⊥ C | A
2 No independence assumptions needed.

(iii) P(A,B) =
∑

c P(A | B, c) P(B | c) P(c)

2 A ⊥⊥ B
2 A ⊥⊥ B | C
2 A ⊥⊥ C
2 A ⊥⊥ C | B

2 B ⊥⊥ C
2 B ⊥⊥ C | A
2 No independence assumptions needed.

(iv) P(A,B | C,D) = P(A | C,D) P(B | A,C,D)

2



2 A ⊥⊥ B
2 A ⊥⊥ B | C
2 A ⊥⊥ B | D
2 C ⊥⊥ D

2 C ⊥⊥ D | A
2 C ⊥⊥ D | B
2 No independence assumptions needed.

(c) (i) Mark all expressions that are equal to P(A | B), given no independence assumptions.

2 ∑
c P (A | B, c)

2 ∑
c P (A, c | B)

2 P (B|A) P (A|C)∑
c P (B,c)

2
∑

c P (A,B,c)∑
c P (B,c)

2 P (A,C|B)
P (C|B)

2 P (A|C,B) P (C|A,B)
P (C|B)

2 None of the provided options.

(ii) Mark all expressions that are equal to P(A,B,C), given that A ⊥⊥ B.

2 P (A | C) P (C | B) P (B)

2 P (A) P (B) P (C | A,B)

2 P (C) P (A | C) P (B | C)

2 P (A) P (C | A) P (B | C)

2 P (A) P (B | A) P (C | A,B)

2 P (A,C) P (B | A,C)

2 None of the provided options.

(iii) Mark all expressions that are equal to P(A,B | C), given that A ⊥⊥ B | C.

2 P (A | C) P (B | C)

2 P (A) P (B|A) P (C|A,B)∑
c P (A,B,c)

2 P (A | B) P (B | C)

2 P (C) P (B|C) P (A|C)
P (C|A,B)

2
∑

c P (A,B,c)

P (C)

2 P (C,A|B) P (B)
P (C)

2 None of the provided options.
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Q2. Bayes’ Nets: Representation
Assume we are given the following ten Bayes’ nets, labeled G1 to G10:

A B

C

G1

A B

C

G2

A B

C

G3

A B

C

G4

A B

C

G5

A B

C

G6

A B

C

G7

A B

C

G8

A B

C

G9

A B

C

G10

Assume we are also given the following three Bayes’ nets, labeled B1 to B3:

A B

C

B1

A B

C

B2

A B

C

B3

(a) Assume we know that a joint distribution d1 (over A,B,C) can be represented by Bayes’ net B1. Mark all of
the following Bayes’ nets that are guaranteed to be able to represent d1.

2 G1

2 G6

2 G2

2 G7

2 G3

2 G8

2 G4

2 G9

2 G5

2 G10

2 None of the above.

(b) Assume we know that a joint distribution d2 (over A,B,C) can be represented by Bayes’ net B2. Mark all of
the following Bayes’ nets that are guaranteed to be able to represent d2.

2 G1

2 G6

2 G2

2 G7

2 G3

2 G8

2 G4

2 G9

2 G5

2 G10

2 None of the above.

(c) Assume we know that a joint distribution d3 (over A,B,C) cannot be represented by Bayes’ net B3. Mark
all of the following Bayes’ nets that are guaranteed to be able to represent d3.

2 G1

2 G6

2 G2

2 G7

2 G3

2 G8

2 G4

2 G9

2 G5

2 G10

2 None of the above.

(d) Assume we know that a joint distribution d4 (over A,B,C) can be represented by Bayes’ nets B1, B2, and
B3. Mark all of the following Bayes’ nets that are guaranteed to be able to represent d4.

2 G1

2 G6

2 G2

2 G7

2 G3

2 G8

2 G4

2 G9

2 G5

2 G10

2 None of the above.
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Q3. Variable Elimination

(a) For the Bayes’ net below, we are given the query P (A,E | +c). All variables have binary domains. Assume we
run variable elimination to compute the answer to this query, with the following variable elimination ordering:
B, D, G, F .

Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

P (A), P (B|A), P (+c), P (D|A,B,+c), P (E|D), P (F |D), P (G|+ c, F )

When eliminating B we generate a new factor f1 as follows:

f1(A,+c,D) =
∑
b

P (b|A)P (D|A, b,+c)

This leaves us with the factors:

P (A), P (+c), P (E|D), P (F |D), P (G|+ c, F ), f1(A,+c,D)

When eliminating D we generate a new factor f2 as follows:

This leaves us with the factors:

When eliminating G we generate a new factor f3 as follows:

This leaves us with the factors:
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When eliminating F we generate a new factor f4 as follows:

This leaves us with the factors:

(b) Write a formula to compute P (A,E | +c) from the remaining factors.

(c) Among f1, f2, f3, f4, which is the largest factor generated, and how large is it? Assume all variables have binary
domains and measure the size of each factor by the number of rows in the table that would represent the factor.

(d) Find a variable elimination ordering for the same query, i.e., for P (A,E | +c), for which the maximum size
factor generated along the way is smallest. Hint: the maximum size factor generated in your solution should
have only 2 variables, for a size of 22 = 4 table. Fill in the variable elimination ordering and the factors
generated into the table below.

Variable Eliminated Factor Generated

For example, in the naive ordering we used earlier, the first row in this table would have had the following two
entries: B, f1(A,+c,D).
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Q4. Bayes Nets: Sampling
Consider the following Bayes Net, where we have observed that B = +b and D = +d.

P (A)
+a 0.5
−a 0.5

P (B|A)
+a +b 0.8
+a −b 0.2
−a +b 0.4
−a −b 0.6

P (C|B)
+b +c 0.1
+b −c 0.9
−b +c 0.7
−b −c 0.3

P (D|A,C)
+a +c +d 0.6
+a +c −d 0.4
+a −c +d 0.1
+a −c −d 0.9
−a +c +d 0.2
−a +c −d 0.8
−a −c +d 0.5
−a −c −d 0.5

(a) Consider doing Gibbs sampling for this example. Assume that we have initialized all variables to the values
+a,+b,+c,+d. We then unassign the variable C, such that we have A = +a, B = +b, C = ?, D = +d.
Calculate the probabilities for new values of C at this stage of the Gibbs sampling procedure.

P (C = +c at the next step of Gibbs sampling) =

P (C = −c at the next step of Gibbs sampling) =

(b) Consider a sampling scheme that is a hybrid of rejection sampling and likelihood-weighted sampling. Under
this scheme, we first perform rejection sampling for the variables A and B. We then take the sampled values for
A and B and extend the sample to include values for variables C and D, using likelihood-weighted sampling.

(i) Below is a list of candidate samples. Mark the samples that would be rejected by the rejection sampling
portion of the hybrid scheme.

2 −a −b
2 +a +b
2 +a −b
2 −a +b
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(ii) To decouple from part (i), you now receive a new set of samples shown below. Fill in the weights for these
samples under our hybrid scheme.

Weight

−a +b −c +d

+a +b −c +d

+a +b −c +d

−a +b +c +d

+a +b +c +d

(iii) Use the weighted samples from part (ii) to calculate an estimate for P (+a|+ b,+d).

The estimate of P (+a|+ b,+d) is

(c) We now attempt to design an alternative hybrid sampling scheme that combines elements of likelihood-weighted
and rejection sampling. For each proposed scheme, indicate whether it is valid, i.e. whether the weighted samples
it produces correctly approximate the distribution P (A,C|+ b,+d).

(i) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling for
the variables C and D. In case of rejection, the values of A and B and the sample weight are thrown
away. Sampling then restarts from node A.

# Valid # Invalid

(ii) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling for
the variables C and D. In case of rejection, the values of A and B and the sample weight are retained.
Sampling then restarts from node C.

# Valid # Invalid

8


