Announcements

- **Midterm 1**
 - Midterm 1 is on **Monday 7/13, 12pm-2pm**
 - Alternate time 12 hours later
 - Practice midterm released (due 7/11 at 11:59pm)
 - Special review sections on Wed/Thu
 - See Piazza for more information

- **Project 2: Games**
 - Due **Friday 7/10 at 11:59pm**

- **Homework 3**
 - Due **Friday 7/10 at 11:59pm**

- **Mini-Content 1**
 - Ends 7/16 at 11:59pm
We’re done with Part I: Search and Planning!

Part II: Probabilistic Reasoning
- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

Part III: Machine Learning
CS 188: Artificial Intelligence

Probability

Instructor: Nikita Kitaev --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Today

- **Probability**
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes’ Rule
 - Inference
 - Independence

- You’ll need all this stuff A LOT for the next few weeks, so make sure you go over it now!
Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green
- Sensors are noisy, but we know $P(\text{Color} \mid \text{Distance})$

<table>
<thead>
<tr>
<th>$P(\text{red} \mid 3)$</th>
<th>$P(\text{orange} \mid 3)$</th>
<th>$P(\text{yellow} \mid 3)$</th>
<th>$P(\text{green} \mid 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.15</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Video of Demo Ghostbuster – No probability
Uncertainty

General situation:

- **Observed variables (evidence):** Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)

- **Unobserved variables:** Agent needs to reason about other aspects (e.g. where an object is or what disease is present)

- **Model:** Agent knows something about how the known variables relate to the unknown variables

- **Probabilistic reasoning gives us a framework for managing our beliefs and knowledge**
A random variable is some aspect of the world about which we (may) have uncertainty

- $R = \text{Is it raining?}$
- $T = \text{Is it hot or cold?}$
- $D = \text{How long will it take to drive to work?}$
- $L = \text{Where is the ghost?}$

We denote random variables with capital letters

Random variables have domains

- R in \{true, false\} (often write as \{+r, -r\})
- T in \{hot, cold\}
- D in \([0, \infty)\)
- L in possible locations, maybe \{(0,0), (0,1), \ldots\}
Probability Distributions

- Associate a probability with each value

 - **Temperature:**

 \[P(T) \]
 \[
 \begin{array}{|c|c|}
 \hline
 T & P \\
 \hline
 \text{hot} & 0.5 \\
 \text{cold} & 0.5 \\
 \hline
 \end{array}
 \]

 - **Weather:**

 \[P(W) \]
 \[
 \begin{array}{|c|c|}
 \hline
 W & P \\
 \hline
 \text{sun} & 0.6 \\
 \text{rain} & 0.1 \\
 \text{fog} & 0.3 \\
 \text{meteor} & 0.0 \\
 \hline
 \end{array}
 \]
Probability Distributions

- Unobserved random variables have distributions

 \[
 P(T) \quad P(W)
 \begin{array}{|c|c|}
 \hline
 T & P \\
 \hline
 \text{hot} & 0.5 \\
 \text{cold} & 0.5 \\
 \hline
 \end{array}
 \begin{array}{|c|c|}
 \hline
 W & P \\
 \hline
 \text{sun} & 0.6 \\
 \text{rain} & 0.1 \\
 \text{fog} & 0.3 \\
 \text{meteor} & 0.0 \\
 \hline
 \end{array}
 \]

- A distribution is a TABLE of probabilities of values

- A probability (lower case value) is a single number

 \[P(W = \text{rain}) = 0.1\]

- Must have: \(\forall x \ P(X = x) \geq 0\) and \(\sum_x P(X = x) = 1\)

Shorthand notation:

- \(P(\text{hot}) = P(T = \text{hot})\),
- \(P(\text{cold}) = P(T = \text{cold})\),
- \(P(\text{rain}) = P(W = \text{rain})\),
- \(\ldots\)

OK if all domain entries are unique
A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \ldots X_n = x_n)$$

$$P(x_1, x_2, \ldots x_n)$$

- Must obey: $P(x_1, x_2, \ldots x_n) \geq 0$

$$\sum_{(x_1, x_2, \ldots x_n)} P(x_1, x_2, \ldots x_n) = 1$$

Size of distribution if n variables with domain sizes d?

- For all but the smallest distributions, impractical to write out!

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(T, W)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>W</td>
<td>P</td>
</tr>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:
- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- *Normalized*: sum to 1.0
- Ideally: only certain variables directly interact

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Events

- An event is a set E of outcomes

$$P(E) = \sum_{(x_1 \ldots x_n) \in E} P(x_1 \ldots x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR sunny?

- Typically, the events we care about are partial assignments, like $P(T=\text{hot})$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>W</td>
<td>P</td>
</tr>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Quiz: Events

- $P(\text{+x, +y})$?
- $P(\text{+x})$?
- $P(\text{-y OR +x})$?

$$P(X, Y)$$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+x$</td>
<td>$+y$</td>
<td>0.2</td>
</tr>
<tr>
<td>$+x$</td>
<td>$-y$</td>
<td>0.3</td>
</tr>
<tr>
<td>$-x$</td>
<td>$+y$</td>
<td>0.4</td>
</tr>
<tr>
<td>$-x$</td>
<td>$-y$</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

\[
P(T, W)
\]

\[
\begin{array}{|c|c|c|}
\hline
T & W & P \\
\hline
\text{hot} & \text{sun} & 0.4 \\
\text{hot} & \text{rain} & 0.1 \\
\text{cold} & \text{sun} & 0.2 \\
\text{cold} & \text{rain} & 0.3 \\
\hline
\end{array}
\]

\[
P(t) = \sum_s P(t, s)
\]

\[
P(s) = \sum_t P(t, s)
\]

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]

\[
P(T)
\]

\[
\begin{array}{|c|c|}
\hline
T & P \\
\hline
\text{hot} & 0.5 \\
\text{cold} & 0.5 \\
\hline
\end{array}
\]

\[
P(W)
\]

\[
\begin{array}{|c|c|}
\hline
W & P \\
\hline
\text{sun} & 0.6 \\
\text{rain} & 0.4 \\
\hline
\end{array}
\]
Quiz: Marginal Distributions

\[P(X, Y) \]

\[
P(x) = \sum_y P(x, y)
\]

\[
P(y) = \sum_x P(x, y)
\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\[
P(X)
\]

<table>
<thead>
<tr>
<th>X</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>-x</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(Y)
\]

<table>
<thead>
<tr>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+y</td>
<td></td>
</tr>
<tr>
<td>-y</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

\[P(a|b) = \frac{P(a,b)}{P(b)} \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4
\]

\[
= P(W = s, T = c) + P(W = r, T = c) = 0.2 + 0.3 = 0.5
\]
Quiz: Conditional Probabilities

\[P(X, Y) \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- \[P(+x \mid +y) \] ?
- \[P(-x \mid +y) \] ?
- \[P(-y \mid +x) \] ?
Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others.

Conditional Distributions

\[
P(W|T = \text{hot})
\]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.8</td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\[
P(W|T = \text{cold})
\]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Joint Distribution

\[
P(T, W)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Normalization Trick

$P(T, W)$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Joint Probabilities

For $P(W = s | T = c)$

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

For $P(W = r | T = c)$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Conditional Probabilities

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Normalization Trick

\[
P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}
\]

\[
= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}
\]

\[
= \frac{0.2}{0.2 + 0.3} = 0.4
\]

SELECT the joint probabilities matching the evidence

\[
P(T, W)
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>W</td>
<td>P</td>
</tr>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

NORMALIZE the selection (make it sum to one)

\[
P(W|T = c)
\]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>P</td>
</tr>
<tr>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

\[
P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}
\]

\[
= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}
\]

\[
= \frac{0.3}{0.2 + 0.3} = 0.6
\]
Normalization Trick

Joint Probabilities

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Selecting Probabilities

Select the joint probabilities matching the evidence:

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Normalizing

Normalize the selection (make it sum to one):

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Why does this work?

Sum of selection is $P($evidence$)!$ ($P(T=c)$, here)

\[
P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}
\]
Quiz: Normalization Trick

- $P(X | Y=-y)$?

<table>
<thead>
<tr>
<th>$P(X, Y)$</th>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$+x$</td>
<td>$+y$</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>$+x$</td>
<td>$-y$</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>$-x$</td>
<td>$+y$</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>$-x$</td>
<td>$-y$</td>
<td>0.1</td>
</tr>
</tbody>
</table>

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)
(Dictionary) To bring or restore to a normal condition

Procedure:
- Step 1: Compute $Z = \sum$ over all entries
- Step 2: Divide every entry by Z

Example 1

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$Z = 0.5$

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Example 2

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>20</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>5</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>10</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>15</td>
</tr>
</tbody>
</table>

$Z = 50$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

- We generally compute conditional probabilities
 - $P(\text{on time} \mid \text{no reported accidents}) = 0.90$
 - These represent the agent’s beliefs given the evidence

- Probabilities change with new evidence:
 - $P(\text{on time} \mid \text{no accidents}, 5 \text{ a.m.}) = 0.95$
 - $P(\text{on time} \mid \text{no accidents}, 5 \text{ a.m., raining}) = 0.80$
 - Observing new evidence causes beliefs to be updated
Inference by Enumeration

- **General case:**
 - Evidence variables: $E_1 \ldots E_k = e_1 \ldots e_k$
 - Query* variable: Q
 - Hidden variables: $H_1 \ldots H_r$

 \[
 \begin{aligned}
 & X_1, X_2, \ldots X_n \\
 & \text{All variables}
 \end{aligned}
 \]

- **Step 1:** Select the entries consistent with the evidence

- **Step 2:** Sum out H to get joint of Query and evidence

- **Step 3:** Normalize

\[
Z = \sum_q P(Q, e_1 \ldots e_k)
\]

\[
P(Q|e_1 \ldots e_k) = \frac{1}{Z} P(Q, e_1 \ldots e_k)
\]

* Works fine with multiple query variables, too
Inference by Enumeration

- $P(W)$?
- $P(W | \text{winter})$?
- $P(W | \text{winter, hot})$?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- **Obvious problems:**
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution
The Product Rule

- Sometimes have conditional distributions but want the joint

\[P(y)P(x|y) = P(x, y) \quad \iff \quad P(x|y) = \frac{P(x, y)}{P(y)} \]
The Product Rule

\[P(y) P(x|y) = P(x, y) \]

- Example:

<table>
<thead>
<tr>
<th>P(W)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
P(D|W)
\]

<table>
<thead>
<tr>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet</td>
<td>sun</td>
<td>0.1</td>
</tr>
<tr>
<td>dry</td>
<td>sun</td>
<td>0.9</td>
</tr>
<tr>
<td>wet</td>
<td>rain</td>
<td>0.7</td>
</tr>
<tr>
<td>dry</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(D, W)
\]

<table>
<thead>
<tr>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet</td>
<td>sun</td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>sun</td>
<td></td>
</tr>
<tr>
<td>wet</td>
<td>rain</td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>rain</td>
<td></td>
</tr>
</tbody>
</table>
The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

\[P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \]

\[P(x_1, x_2, \ldots, x_n) = \prod_i P(x_i|x_1 \ldots x_{i-1}) \]

- Why is this always true?
Bayes’ Rule

- Two ways to factor a joint distribution over two variables:

\[P(x, y) = P(x \mid y) P(y) = P(y \mid x) P(x) \]

- Dividing, we get:

\[P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!
Inference with Bayes’ Rule

- Example: Diagnostic probability from causal probability:

\[
P(\text{cause} | \text{effect}) = \frac{P(\text{effect} | \text{cause}) P(\text{cause})}{P(\text{effect})}
\]

- Example:
 - M: meningitis, S: stiff neck

\[
\begin{align*}
P(+m) &= 0.0001 \\
P(+s | +m) &= 0.8 \\
P(+s | -m) &= 0.01
\end{align*}
\]

\[
P(+m | +s) = \frac{P(+s | +m) P(+m)}{P(+s)} = \frac{P(+s | +m) P(+m)}{P(+s | +m) P(+m) + P(+s | -m) P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}
\]

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?
Quiz: Bayes’ Rule

- **Given:**

 \[
 \begin{array}{c|c|c}
 \text{D} & \text{W} & \text{P} \\
 \hline
 \text{wet} & \text{sun} & 0.1 \\
 \text{dry} & \text{sun} & 0.9 \\
 \text{wet} & \text{rain} & 0.7 \\
 \text{dry} & \text{rain} & 0.3 \\
 \end{array}
 \]

- **What is** \(P(W | \text{dry}) \) ?
Let’s say we have two distributions:

- **Prior distribution** over ghost location: $P(G)$
 - Let’s say this is uniform
- Sensor reading model: $P(R \mid G)$
 - Given: we know what our sensors do
 - $R =$ reading color measured at (1,1)
 - E.g. $P(R = \text{yellow} \mid G=(1,1)) = 0.1$

We can calculate the **posterior distribution** $P(G \mid r)$ over ghost locations given a reading using Bayes’ rule:

$$P(g \mid r) \propto P(r \mid g)P(g)$$
Video of Demo Ghostbusters with Probability
Next Time: Bayes’ Nets