CS 188: Artificial Intelligence

Decision Networks and Value of Information

Instructor: Nikita Kitaev
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Ghostbusters Decision Network
POMDPs
POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition function $P(s' \mid s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$

- POMDPs add:
 - Observations O
 - Observation function $P(o \mid s)$ (or $O(s,o)$)

- POMDPs are MDPs over belief states b (distributions over S)

- We’ll be able to say more in a few lectures
Example: Ghostbusters

- **In (static) Ghostbusters:**
 - Belief state determined by evidence to date \(\{e\} \)
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence

- **Solving POMDPs**
 - One way: use truncated expectimax to compute approximate value of actions
 - What if you only considered busting or one sense followed by a bust?
 - You get a VPI-based agent!
Video of Demo Ghostbusters with VPI
Announcements

- **Written Assessment 2 is out!**
 - Due **Friday 7/24 at 11:59pm**

- **Homework 5**
 - Due **Friday 7/24 at 11:59pm**

- **Midterm 2**
 - Midterm 2 is on **Wednesday 7/29, 12pm-2pm**

- **Project 4**
 - Due **Friday 7/31 at 11:59pm**
CS 188: Artificial Intelligence

Naïve Bayes

Agent Testing Today!

Instructor: Nikita Kitaev --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Machine Learning

- Up until now: how use a model to make optimal decisions

- Machine learning: how to acquire a model from data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering, neural nets)

- Today: model-based classification with Naive Bayes
Classification
Example: Spam Filter

- **Input**: an email
- **Output**: spam/ham

Setup:
- Get a large collection of example emails, each labeled “spam” or “ham”
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham/spam decision
- Words: FREE!
- Text Patterns: $dd, CAPS
- Non-text: SenderInContacts, WidelyBroadcast
- ...

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret. ...

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY $99

Ok, I know this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.
Example: Digit Recognition

- **Input:** images / pixel grids
- **Output:** a digit 0-9

Setup:
- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision
- Pixels: (6,8)=ON
- Shape Patterns: NumComponents, AspectRatio, NumLoops
- ...
- Features are increasingly induced rather than crafted
Other Classification Tasks

- Classification: given inputs x, predict labels (classes) y

- Examples:
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Automatic essay grading (input: document, classes: grades)
 - Customer service email routing
 - Review sentiment
 - Language ID
 - … many more

- Classification is an important commercial technology!
Model-Based Classification
Model-Based Classification

- **Model-based approach**
 - Build a model (e.g. Bayes’ net) where both the output label and input features are random variables
 - Instantiate any observed features
 - Query for the distribution of the label conditioned on the features

- **Challenges**
 - What structure should the BN have?
 - How should we learn its parameters?
Naïve Bayes for Digits

Naïve Bayes: Assume all features are independent effects of the label

Simple digit recognition version:
- One feature (variable) F_{ij} for each grid position $<i,j>$
- Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$$1 \rightarrow \langle F_{0,0} = 0, F_{0,1} = 0, F_{0,2} = 1, F_{0,3} = 1, F_{0,4} = 0, \ldots, F_{15,15} = 0 \rangle$$
- Here: lots of features, each is binary valued

Naïve Bayes model: $$P(Y|F_{0,0} \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

What do we need to learn?
A general Naïve Bayes model:

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_{i} P(F_i|Y) \]

- We only have to specify how each feature depends on the class
- Total number of parameters is \textit{linear} in \(n \)
- Model is very simplistic, but often works anyway
Goal: compute posterior distribution over label variable Y

- Step 1: get joint probability of label and evidence for each label

$$P(Y, f_1 \cdots f_n) = \left[\begin{array}{c} P(y_1, f_1 \cdots f_n) \\ P(y_2, f_1 \cdots f_n) \\ \vdots \\ P(y_k, f_1 \cdots f_n) \end{array} \right]$$

- Step 2: sum to get probability of evidence

$$P(f_1 \cdots f_n) = \frac{P(y_1) \prod_i P(f_i|y_1) + P(y_2) \prod_i P(f_i|y_2) + \cdots + P(y_k) \prod_i P(f_i|y_k)}{P(f_1 \cdots f_n)}$$

- Step 3: normalize by dividing Step 1 by Step 2

$$P(Y|f_1 \cdots f_n) = \frac{P(Y, f_1 \cdots f_n)}{P(f_1 \cdots f_n)}$$
What do we need in order to use Naïve Bayes?

- Inference method (we just saw this part)
 - Start with a bunch of probabilities: $P(Y)$ and the $P(F_i|Y)$ tables
 - Use standard inference to compute $P(Y|F_1...F_n)$
 - Nothing new here

- Estimates of local conditional probability tables
 - $P(Y)$, the prior over labels
 - $P(F_i|Y)$ for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by θ
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data counts: we’ll look at this soon
Example: Conditional Probabilities

$$P(Y)$$

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$P(F_{3,1} = on|Y)$$ $$P(F_{5,5} = on|Y)$$

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Naïve Bayes for Text

- **Bag-of-words Naïve Bayes:**
 - Features: W_i is the word at position i
 - As before: predict label conditioned on feature variables (spam vs. ham)
 - As before: assume features are conditionally independent given label
 - New: each W_i is identically distributed

- **Generative model:**
 \[
 P(Y, W_1 \ldots W_n) = P(Y) \prod_i P(W_i|Y)
 \]

- “Tied” distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution $P(F|Y)$
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs $P(W|Y)$
 - Why make this assumption?
 - Called “bag-of-words” because model is insensitive to word order or reordering
Example: Spam Filtering

- **Model:**
 \[P(Y, W_1 \ldots W_n) = P(Y) \prod_i P(W_i|Y) \]

- **What are the parameters?**

| P(Y) | P(W|spam) | P(W|ham) |
|------|-----------|----------|
| ham: 0.66 | the: 0.0156 | the: 0.0210 |
| spam: 0.33 | to: 0.0153 | to: 0.0133 |
| | and: 0.0115 | of: 0.0119 |
| | of: 0.0095 | 2002: 0.0110 |
| | you: 0.0093 | with: 0.0110 |
| | a: 0.0086 | from: 0.0108 |
| | with: 0.0080 | and: 0.0107 |
| | from: 0.0075 | a: 0.0105 |
| | ... | ... |

- **Where do these tables come from?**
Spam Example

| Word | P(w|spam) | P(w|ham) | Tot Spam | Tot Ham |
|--------|----------|---------|----------|---------|
| (prior)| 0.33333 | 0.66666 | -1.1 | -0.4 |

\[P(\text{spam} \mid w) = 98.9 \]
Training and Testing
Empirical Risk Minimization

- **Empirical risk minimization**
 - Basic principle of machine learning
 - We want the model (classifier, etc) that does best on the true test distribution
 - Don’t know the true distribution so pick the best model on our actual training set
 - Finding “the best” model on the training set is phrased as an optimization problem

- **Potential worry: overfitting to the training set**
 - Better with more training data (less sampling variance, training more like test)
 - Better if we limit the complexity of our hypotheses (regularization and/or small hypothesis spaces)
Important Concepts

- **Data:** labeled instances (e.g. emails marked spam/ham)
 - Training set
 - Held out set
 - Test set

- **Features:** attribute-value pairs which characterize each x

- **Experimentation cycle**
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never “peek” at the test set!

- **Evaluation (many metrics possible, e.g. accuracy)**
 - Accuracy: fraction of instances predicted correctly

- **Overfitting and generalization**
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - We’ll investigate overfitting and generalization formally in a few lectures
Generalization and Overfitting
Degree 15 polynomial
Example: Overfitting

\[P(\text{features}, C = 2) \]

\[P(C = 2) = 0.1 \]
\[P(\text{on} | C = 2) = 0.8 \]
\[P(\text{off} | C = 2) = 0.1 \]
\[P(\text{on} | C = 2) = 0.01 \]

\[P(\text{features}, C = 3) \]

\[P(C = 3) = 0.1 \]
\[P(\text{on} | C = 3) = 0.8 \]
\[P(\text{off} | C = 3) = 0.7 \]
\[P(\text{on} | C = 3) = 0.0 \]

2 wins!!
Example: Overfitting

- Postiors determined by *relative* probabilities (odds ratios):

\[
\frac{P(W|\text{ham})}{P(W|\text{spam})} = \frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

south-west : inf	screens : inf
nation : inf	minute : inf
morally : inf	guaranteed : inf
nicely : inf	$205.00 : inf
extent : inf	delivery : inf
seriously : inf	signature : inf
...	...

What went wrong here?
Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
 - Unlikely that every occurrence of “minute” is 100% spam
 - Unlikely that every occurrence of “seriously” is 100% ham
 - What about all the words that don’t occur in the training set at all?
 - In general, we can’t go around giving unseen events zero probability

- As an extreme case, imagine using the entire email as the only feature (e.g. document ID)
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

- To generalize better: we need to smooth or regularize the estimates
Parameter Estimation
Parameter Estimation

- Estimating the distribution of a random variable
- *Elicitation*: ask a human (why is this hard?)
- *Empirically*: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value:
 \[
P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}
 \]
 \[
P_{ML}(r) = \frac{2}{3}
 \]
 - This is the estimate that maximizes the *likelihood of the data*

\[
L(x, \theta) = \prod_i P_x(x_i) = \theta \cdot \theta \cdot (1 - \theta)
\]

\[
P_\theta(x = \text{red}) = \theta
\]

\[
P_\theta(x = \text{blue}) = 1 - \theta
\]
Your First Consulting Job

- A billionaire tech entrepreneur asks you a question:
 - He says: I have thumbtack, if I flip it, what’s the probability it will fall with the nail up?
 - You say: Please flip it a few times:

![Thumbtack images]

- You say: The probability is:
 - $P(H) = 3/5$
- He says: Why???
- You say: Because...
Your First Consulting Job

- $P(\text{Heads}) = \theta, \ P(\text{Tails}) = 1-\theta$

- **Flips are i.i.d.:** $D=\{x_i | i=1...n\}$, $P(D | \theta) = \prod_i P(x_i | \theta)$
 - Independent events
 - Identically distributed according to unknown distribution

- **Sequence D of α_H Heads and α_T Tails**

\[
P(D | \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}
\]
Maximum Likelihood Estimation

- **Data:** Observed set D of α_H Heads and α_T Tails
- **Hypothesis space:** Binomial distributions
- **Learning:** finding θ is an optimization problem
 - What’s the objective function?
 \[P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]
- **MLE:** Choose θ to maximize probability of D
 \[\hat{\theta} = \arg \max_{\theta} P(D \mid \theta) \]
 \[= \arg \max_{\theta} \ln P(D \mid \theta) \]
Maximum Likelihood Estimation

\[\hat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta) \]
\[= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

- Set derivative to zero, and solve!

\[\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} [\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}] \]
\[= \frac{d}{d\theta} [\alpha_H \ln \theta + \alpha_T \ln(1 - \theta)] \]
\[= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta) \]
\[= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \]

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]
Smoothing
Maximum Likelihood?

- Relative frequencies are the maximum likelihood estimates

\[\theta_{ML} = \arg \max_\theta P(X|\theta) \]
\[= \arg \max_\theta \prod_i P_\theta(X_i) \]
\[P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}} \]

- Another option is to consider the most likely parameter value given the data

\[\theta_{MAP} = \arg \max_\theta P(\theta|X) \]
\[= \arg \max_\theta P(X|\theta)P(\theta)/P(X) \]
\[= \arg \max_\theta P(X|\theta)P(\theta) \]
Unseen Events
Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did

\[
P_{LAP}(x) = \frac{c(x) + 1}{\sum_x[c(x) + 1]}
\]

\[
= \frac{c(x) + 1}{N + |X|}
\]

- Can derive this estimate with *Dirichlet priors* (see cs281a)
Laplace Smoothing

- **Laplace’s estimate (extended):**
 - Pretend you saw every outcome k extra times
 \[
P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}
\]
 - What’s Laplace with $k = 0$?
 - k is the strength of the prior

- **Laplace for conditionals:**
 - Smooth each condition independently:
 \[
P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|}
\]
Estimation: Linear Interpolation*

- In practice, Laplace can perform poorly for \(P(X|Y) \):
 - When \(|X|\) is very large
 - When \(|Y|\) is very large

- Another option: linear interpolation
 - Also get the empirical \(P(X) \) from the data
 - Make sure the estimate of \(P(X|Y) \) isn’t too different from the empirical \(P(X) \)

\[
P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)
\]

- What if \(\alpha \) is 0? 1?

- For even better ways to estimate parameters, as well as details of the math, see cs281a, cs288
Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

\[
\frac{P(W|\text{ham})}{P(W|\text{spam})} \quad \frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

<table>
<thead>
<tr>
<th></th>
<th>ham</th>
<th>spam</th>
</tr>
</thead>
<tbody>
<tr>
<td>helvetica</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>seems</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>ago</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>areas</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>verdana</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>ORDER</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>money</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do these make more sense?
Tuning
Now we’ve got two kinds of unknowns
- Parameters: the probabilities $P(X|Y), P(Y)$
- Hyperparameters: e.g. the amount / type of smoothing to do, k, α

What should we learn where?
- Learn parameters from training data
- Tune hyperparameters on different data
 - Why?
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data
Features

- 4 Wheels!
- Larger than a Breadbox
- Made of Metal
- 100,000-mile drivetrain warranty

Batteries Not Included
Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, click through to

 http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .
What to Do About Errors?

- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model

- Next class we’ll talk about classifiers which let you easily add arbitrary features more easily, and, later, how to induce new features
First step: get a baseline
- Baselines are very simple “straw man” procedures
- Help determine how hard the task is
- Help know what a “good” accuracy is

Weak baseline: most frequent label classifier
- Gives all test instances whatever label was most common in the training set
- E.g. for spam filtering, might label everything as ham
- Accuracy might be very high if the problem is skewed
- E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

For real research, usually use previous work as a (strong) baseline
The confidence of a probabilistic classifier:
- Posterior probability of the top label

\[\text{confidence}(x) = \max_y P(y|x) \]

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

Calibration
- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What’s the value of calibration?
Bayes rule lets us do diagnostic queries with causal probabilities

The naïve Bayes assumption takes all features to be independent given the class label

We can build classifiers out of a naïve Bayes model using training data

Smoothing estimates is important in real systems

Classifier confidences are useful, when you can get them
Next Time: Discriminative Learning