Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of (discounted) rewards
Markov decision processes:
- States S
- Actions A
- Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
- Rewards $R(s,a,s')$ (and discount γ)
- Start state s_0

Quantities:
- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)
Optimal Quantities

- The value (utility) of a state s:
 $V^*(s) =$ expected utility starting in s and acting optimally

- The value (utility) of a q-state (s,a):
 $Q^*(s,a) =$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
 $\pi^*(s) =$ optimal action from state s
Gridworld Values V^*

VALUES AFTER 100 ITERATIONS
Gridworld: Q^*

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.77</td>
<td>0.85</td>
</tr>
<tr>
<td>0.57</td>
<td>0.64</td>
<td>0.60</td>
<td>0.74</td>
<td>0.66</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53</td>
<td>0.67</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>0.51</td>
<td>0.51</td>
<td></td>
<td>0.53</td>
<td>-0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.46</td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td>0.40</td>
<td></td>
<td>0.48</td>
<td>-0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>0.41</td>
<td>0.43</td>
<td>0.42</td>
<td>0.40</td>
<td>0.29</td>
<td>0.28</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.44</td>
<td>0.40</td>
<td>0.41</td>
<td>0.41</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q-VALUES AFTER 100 ITERATIONS
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Value iteration is just a fixed point solution method

- ... though the \(V_k \) vectors are also interpretable as time-limited values
How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
- That last layer is at best all R_{MAX}.
- It is at worst R_{MIN}.
- But everything is discounted by γ^k that far out.
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
- So as k increases, the values converge.
Policy Methods
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state.
 - Though the tree’s value would depend on which policy we fixed.
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

- Define the utility of a state s, under a fixed policy π:
 \[V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy π?

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

\[V_0^\pi(s) = 0\]

\[V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]\]

- Efficiency: O(S^2) per iteration

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Extraction
Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)

\[
\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]
\]

- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Policy Iteration
Problems with Value Iteration

- Value iteration repeats the Bellman updates:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
k=0

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 2 ITERATIONS
$k=4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=5$

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 6 ITERATIONS

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0
Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

VALUES AFTER 7 ITERATIONS

0.62 0.74 0.85 1.00

0.50 0.57 -1.00

0.34 0.36 0.45 0.24
Gridworld Display

Values after 8 iterations:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.53</td>
<td>0.57</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>0.39</td>
<td>0.46</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Parameters:
- $k = 8$
- Noise = 0.2
- Discount = 0.9
- Living reward = 0
k = 9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=11$

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 100

VALUES AFTER 100 ITERATIONS

0.64 0.74 0.85 1.00

0.57 0.57 -1.00

0.49 0.43 0.48 0.28

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Iteration

- **Evaluation:** For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 $$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- **Improvement:** For fixed values, get a better policy using policy extraction:
 - One-step look-ahead:
 $$\pi_{i+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- **So you want to...**
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- **These all look the same!**
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
Double Bandits
Double-Bandit MDP

- **Actions:** Blue, Red
- **States:** Win, Lose

No discount
100 time steps
Both states have the same value
Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

<table>
<thead>
<tr>
<th>Value</th>
<th>Play Red</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Blue</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

No discount
100 time steps
Both states have the same value
Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0
Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Next Time: Reinforcement Learning!