Q1. Can You Classify Them?

(a) For each of the 4 plots below, create a classification dataset which can or cannot be classified correctly by Naive Bayes and perceptron, as specified. Each dataset should consist of nine points represented by the boxes, shading the box ■ for positive class or leaving it blank □ for negative class. Mark Not Possible if no such dataset is possible.

For can be classified by Naive Bayes, there should be some probability distributions \(P(Y) \) and \(P(F_1|Y), P(F_2|Y) \) for the class \(Y \) and features \(F_1, F_2 \) that can correctly classify the data according to the Naive Bayes rule, and for cannot there should be no such distribution. For perceptron, assume that there is a bias feature in addition to \(F_1 \) and \(F_2 \).

Many solutions were accepted for all except the bottom right. Naive Bayes can correctly classify any linearly separable dataset (as well as certain other datasets), and so it can classify every dataset that perceptron can. The full set of datasets which can be classified correctly are shown in the figures below, with classifiable datasets in green and unclassifiable in red (see next page).
Naive Bayes (classifiable datasets in green, unclassifiable in red):

Perceptron (classifiable datasets in green, unclassifiable in red):
Q2. Perceptron

We would like to use a perceptron to train a classifier for datasets with 2 features per point and labels +1 or -1.

Consider the following labeled training data:

<table>
<thead>
<tr>
<th>Features</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,-2)</td>
<td>1</td>
</tr>
<tr>
<td>(3,-1)</td>
<td>-1</td>
</tr>
<tr>
<td>(1,2)</td>
<td>-1</td>
</tr>
<tr>
<td>(3,1)</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Our two perceptron weights have been initialized to \(w_1 = 2 \) and \(w_2 = -2 \). After processing the first point with the perceptron algorithm, what will be the updated values for these weights?

For the first point, \(y = g(w_1 x_1 + w_2 x_2) = g(2 \cdot -1 + -2 \cdot 2) = g(-5) = -1 \), which is incorrectly classified. To update weights, we add the first data point: \(w_1 = 2 + (-1) = 1 \) and \(w_2 = -2 - 2 = 0 \).

(b) After how many steps will the perceptron algorithm converge? Write “never” if it will never converge.

Note: one steps means processing one point. Points are processed in order and then repeated, until convergence.

The data is not separable, so it will never converge.

(c) Instead of the standard perceptron algorithm, we decide to treat the perceptron as a single node neural network and update the weights using gradient descent on the loss function.

The loss function for one data point is \(\text{Loss}(y, y^*) = (y - y^*)^2 \), where \(y^* \) is the training label for a given point and \(y \) is the output of our single node network for that point.

(i) Given a general activation function \(g(z) \) and its derivative \(g'(z) \), what is the derivative of the loss function with respect to \(w_1 \) in terms of \(g \), \(g' \), \(y^* \), \(x_1 \), \(x_2 \), \(w_1 \), and \(w_2 \)?

\[
\frac{\partial \text{Loss}}{\partial w_1} = 2(g(w_1 x_1 + w_2 x_2) - y^*)g'(w_1 x_1 + w_2 x_2)x_1
\]

(ii) For this question, the specific activation function that we will use is:

\(g(z) = 1 \) if \(z \geq 0 \) and \(= -1 \) if \(z < 0 \)

Given the following gradient descent equation to update the weights given a single data point. With initial weights of \(w_1 = 2 \) and \(w_2 = -2 \), what are the updated weights after processing the first point?

Gradient descent update equation: \(w_i = w_i - \alpha \frac{\partial \text{Loss}}{\partial w_i} \)

Because the gradient of \(g \) is zero, the weights will stay \(w_1 = 2 \) and \(w_2 = -2 \).

(iii) What is the most critical problem with this gradient descent training process with that activation function?

The gradient of that activation function is zero, so the weights will not update.
Q3. Naive Bayes: Pacman or Ghost?

You are standing by an exit as either Pacmen or ghosts come out of it. Every time someone comes out, you get two observations: a visual one and an auditory one, denoted by the random variables X_v and X_a, respectively. The visual observation informs you that the individual is either a Pacman ($X_v = 1$) or a ghost ($X_v = 0$). The auditory observation X_a is defined analogously. Your observations are a noisy measurement of the individual’s true type, which is denoted by Y. After the individual comes out, you find out what they really are: either a Pacman ($Y = 1$) or a ghost ($Y = 0$). You have logged your observations and the true types of the first 20 individuals:

<table>
<thead>
<tr>
<th>individual i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>first observation $X_v^{(i)}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>second observation $X_a^{(i)}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>individual’s type $Y^{(i)}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The superscript (i) denotes that the datum is the ith one. Now, the individual with $i = 20$ comes out, and you want to predict the individual’s type $Y^{(20)}$ given that you observed $X_v^{(20)} = 1$ and $X_a^{(20)} = 1$.

(a) Assume that the types are independent, and that the observations are independent conditioned on the type. You can model this using naïve Bayes, with $X_v^{(i)}$ and $X_a^{(i)}$ as the features and $Y^{(i)}$ as the labels. Assume the probability distributions take on the following form:

\[
P(X_v^{(i)} = x_v | Y^{(i)} = y) = \begin{cases} p_v & \text{if } x_v = y \\ 1 - p_v & \text{if } x_v \neq y \end{cases}
\]

\[
P(X_a^{(i)} = x_a | Y^{(i)} = y) = \begin{cases} p_a & \text{if } x_a = y \\ 1 - p_a & \text{if } x_a \neq y \end{cases}
\]

\[
P(Y^{(i)} = 1) = q
\]

for $p_v, p_a, q \in [0, 1]$ and $i \in \mathbb{N}$.

(i) What’s the maximum likelihood estimate of p_v, p_a and q?

\[p_v = \frac{4}{5}, \quad p_a = \frac{3}{5}, \quad q = \frac{1}{2}\]

To estimate q, we count 10 $Y = 1$ and 10 $Y = 0$ in the data. For p_v, we have $p_v = 8/10$ cases where $X_v = 1$ given $Y = 1$ and $1 - p_v = 2/10$ cases where $X_v = 1$ given $Y = 0$. So $p_v = 4/5$. For p_a, we have $p_a = 2/10$ cases where $X_a = 1$ given $Y = 1$ and $1 - p_a = 0/10$ cases where $X_a = 1$ given $Y = 0$. The average of $2/10$ and 1 is $3/5$.

(ii) What is the probability that the next individual is Pacman given your observations? Express your answer in terms of the parameters p_v, p_a and q (you might not need all of them).

\[
P(Y^{(20)} = 1 | X_v^{(20)} = 1, X_a^{(20)} = 1) = \frac{p_v p_a q}{p_v p_a q + (1 - p_v) (1 - p_a) q}
\]

The joint distribution $P(Y = 1, X_v = 1, X_a = 1) = p_v p_a q$. For the denominator, we need to sum out over Y, that is, we need $P(Y = 1, X_v = 1, X_a = 1) + P(Y = 0, X_v = 1, X_a = 1)$.

Now, assume that you are given additional information: you are told that the individuals are actually coming out of a bus that just arrived, and each bus carries exactly 9 individuals. Unlike before, the types of every 9 consecutive individuals are conditionally independent given the bus type, which is denoted by \(Z \). Only after all of the 9 individuals have walked out, you find out the bus type: one that carries mostly Pacmans (\(Z = 1 \)) or one that carries mostly ghosts (\(Z = 0 \)). Thus, you only know the bus type in which the first 18 individuals came in:

<table>
<thead>
<tr>
<th>individual (i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>first observation (X_v^{(i)})</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>second observation (X_a^{(i)})</td>
<td>0</td>
</tr>
<tr>
<td>individual’s type (Y^{(i)})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bus (j)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{bus type } Z^{(j)} = 0 \)

(b) You can model this using a variant of naïve bayes, where now 9 consecutive labels \(Y^{(i)}, \ldots, Y^{(i+8)} \) are conditionally independent given the bus type \(Z^{(j)} \), for bus \(j \) and individual \(i = 9j \). Assume the probability distributions take on the following form:

\[
P(X_v^{(i)} = x_v | Y^{(i)} = y) = \begin{cases}
 p_v & \text{if } x_v = y \\
 1 - p_v & \text{if } x_v \neq y
\end{cases}
\]

\[
P(X_a^{(i)} = x_a | Y^{(i)} = y) = \begin{cases}
 p_a & \text{if } x_a = y \\
 1 - p_a & \text{if } x_a \neq y
\end{cases}
\]

\[
P(Y^{(i)} = 1 | Z^{(j)} = z) = \begin{cases}
 q_0 & \text{if } z = 0 \\
 q_1 & \text{if } z = 1
\end{cases}
\]

\[
P(Z^{(j)} = 1) = r
\]

for \(p, q_0, q_1, r \in [0, 1] \) and \(i, j \in \mathbb{N} \).

(i) What’s the maximum likelihood estimate of \(q_0, q_1 \) and \(r \)?

\[
q_0 = \frac{2}{9} \quad q_1 = \frac{8}{9} \quad r = \frac{1}{2}
\]

For \(r \), we’ve seen one ghost bus and one pacman bus, so \(r = 1/2 \). For \(q_0 \), we’re finding \(P(Y = 1 | Z = 0) \), which is \(2/9 \). For \(q_1 \), we’re finding \(P(Y = 1 | Z = 1) \), which is \(8/9 \).
(ii) Compute the following joint probability. Simplify your answer as much as possible and express it in terms of the parameters p_v, p_a, q_0, q_1 and r (you might not need all of them).

$$P(Y^{(20)} = 1, X^{(20)}_v = 1, X^{(20)}_a = 1, Y^{(19)} = 1, Y^{(18)} = 1) = p_a p_v [q_0^3 (1 - r) + q_1^3 r]$$

$$P(Y^{(20)} = 1, X^{(20)}_v = 1, X^{(20)}_a = 1, Y^{(19)} = 1, Y^{(18)} = 1) = \sum_z P(Y^{(20)} = 1 | Z^{(2)} = z) P(Z^{(2)} = z) P(X^{(20)}_v = 1 | Y^{(20)} = 1) P(X^{(20)}_a = 1 | Y^{(20)} = 1)$$

$$= q_0 (1 - r) p_a p_v q_0 q_0 + q_1 r p_a p_v q_1 q_1$$

$$= p_a p_v [q_0^3 (1 - r) + q_1^3 r]$$