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Introduction to
Artificial Intelligence Exam Prep 5B Solutions

Q1. HMMs: Help Your House Help You
Imagine you have a smart house that wants to track your location within itself so it can turn on the lights in the room you are in
and make you food in your kitchen. Your house has 4 rooms (A,B, C,D) in the floorplan below (A is connected to B and D, B
is connected to A and C, C is connected to B and D, and D is connected to A and C):

A
B D

C

At the beginning of the day (t = 0), your probabilities of being in each room are pA, pB , pC , and pD for rooms A, B, C, and D,
respectively, and at each time t your position (following a Markovian process) is given by Xt. At each time, your probability
of staying in the same room is q0, your probability of moving clockwise to the next room is q1, and your probability of moving
counterclockwise to the next room is q−1 = 1 − q0 − q1.

(a) Initially, assume your house has no way of sensing where you are. What is the probability that you will be in room D at
time t = 1?

# q0pD # q0pD + q1pA + q−1pC + 2q1pB  q0pD + q1pA + q−1pC

# q0pD + q−1pA + q1pC # q1pA + q1pC + q0pD # None of these
This probability is given by the sum of three probabilities: 1) q0pD: You are in room D to start (pD) and stay there (q0),
2) q1pA: You are in room A to start (pA) and move clockwise to room D (q1), and 3) q−1pC : You are in room C to start
(pC ) and move counterclockwise to room D (q−1).

Now assume your house contains a sensorMA that detects motion (+m) or no motion (-m) in room A. However, the sensor is
a bit noisy and can be tricked by movement in adjacent rooms, resulting in the conditional distributions for the sensor given in
the table below. The prior distribution for the sensor’s output is also given.

MA P (MA
| X = A) P (MA

| X = B) P (MA
| X = C) P (MA

| X = D)

+mA 1 − 2
 
 0.0 


−mA 2
 1 − 
 1.0 1 − 


MA P (MA)

+mA 0.5

−mA 0.5

(b) You decide to help your house to track your movements using a particle filter with three particles. At time t = T , the parti-
cles are atX0 = A,X1 = B,X2 = D. What is the probability that the particles will be resampled asX0 = X1 = X2 = A
after time elapse? Select all terms in the product.

■ q0 □ q20 □ q30 ■ q1 □ q21 □ q31 ■ q−1 □ q2−1 □ q3−1 # None of these

The probability that all particles will be resampled as being in room A is q0q1q−1 since particle X0 stays in A with
probability q0, particle X1 moves clockwise to A with probability q1, and particle X2 moves counterclockwise with
probability q−1.

(c) Assume that the particles are actually resampled after time elapse as X0 = D,X1 = B,X2 = C , and the sensor observes
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MA = −mA. What are the particle weights given the observation?

Particle Weight

X0 = D # 
  1 − 
 # 1 − 2
 # 0.0 # 1.0 # 2
 # None of these

X1 = B # 
  1 − 
 # 1 − 2
 # 0.0 # 1.0 # 2
 # None of these

X2 = C # 
 # 1 − 
 # 1 − 2
 # 0.0  1.0 # 2
 # None of these

We can read these weights off of the tables given above. The weight forX0 is given by P (MA = −mA|X = D) = 1−
 , the
weight forX1 is given by P (MA = −mA|X = B) = 1−
 , and the weight forX2 is given by P (MA = −mA|X = C) = 1.

Now, assume your house also contains sensorsMB andMD in rooms B and D, respectively, with the conditional distributions
of the sensors given below and the prior equivalent to that of sensorMA.

MB P (MB
| X = A) P (MB

| X = B) P (MB
| X = C) P (MB

| X = D)

+mB 
 1 − 2
 
 0.0

−mB 1 − 
 2
 1 − 
 1.0

MD P (MD
| X = A) P (MD

| X = B) P (MD
| X = C) P (MD

| X = D)

+mD 
 0.0 
 1 − 2


−mD 1 − 
 1.0 1 − 
 2


(d) Again, assume that the particles are actually resampled after time elapse as X0 = D,X1 = B,X2 = C . The sensor
readings are nowMA = −mA,MB = −mB ,MD = +mD. What are the particle weights given the observations?

Particle Weight

X0 = D
# 
2 − 2
3 # 3 − 2
 # 0.0 # 
 − 
2 + 
3

 1 − 3
 + 2
2 # 2 − 
 # 1 − 2
 + 
2 # None of these

X1 = B
# 
2 − 2
3 # 3 − 2
  0.0 # 
 − 
2 + 
3

# 1 − 3
 + 2
2 # 2 − 
 # 1 − 2
 + 
2 # None of these

X2 = C
# 
2 − 2
3 # 3 − 2
 # 0.0 # 
 − 
2 + 
3

# 1 − 3
 + 2
2 # 2 − 
 # 1 − 2
 + 
2  None of these

The weight forX0 is given by P (MA = −mA|X = D)P (MB = −mB|X = D)P (mD = +mD|X = D) = (1 − 
)(1.0)(1 −
2
) = 1 − 3
 + 2
2, the weight for X1 is given by P (MA = −mA|X = B)P (MB = −mB|X = B)P (MD = +mD|X =
B) = (1 − 
)(2
)(0.0) = 0.0, and the weight for X2 is given by P (MA = −mA|X = C)P (MB = −mB|X = C)P (MA =
+mD|X = C) = (1.0)(1 − 
)(
) = 
 − 
2.

The sequence of observations from each sensor are expressed as the following: mA0∶t are all measurements mA0 , m
A
1 ,… , mAt from

sensorMA, mB0∶t are all measurements mB0 , m
B
1 ,… , mBt from sensorMB , and mD0∶t are all measurements mD0 , m

D
1 ,… , mDt from

sensorMD. Your house can get an accurate estimate of where you are at a given time t using the forward algorithm. The forward
algorithm update step is shown here:
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P (Xt | m
A
0∶t, m

B
0∶t, m

D
0∶t) ∝ P (Xt, m

A
0∶t, m

B
0∶t, m

D
0∶t) (1)

=
∑

xt−1

P (Xt, xt−1, m
A
t , m

B
t , m

D
t , m

A
0∶t−1, m

B
0∶t−1, m

D
0∶t−1) (2)

=
∑

xt−1

P (Xt | xt−1)P (xt−1, mA0∶t−1, m
B
0∶t−1, m

D
0∶t−1) (3)

(e) Which of the following expression(s) correctly complete the missing expression in line (3) above (regardless of whether
they are available to the algorithm during execution)? Fill in all that apply.

■ P (mAt , m
B
t , m

D
t | Xt, xt−1) □ P (mAt , m

B
t , m

D
t | xt−1) □ P (mAt | xt−1)P (mBt | xt−1)P (mDt | xt−1)

□ P (mAt | mA0∶t−1)P (m
B
t | mB0∶t−1)P (m

D
t | mD0∶t−1) ■ P (mAt , m

B
t , m

D
t | Xt, xt−1, mA0∶t−1, m

B
0∶t−1, m

D
0∶t−1)

■ P (mAt | Xt)P (mBt | Xt)P (mDt | Xt) ■ P (mAt , m
B
t , m

D
t | Xt) # None of these

Using the chain rule from the previous step,

P (Xt, xt−1, m
A
t , m

B
t , m

D
t , m

A
0∶t−1, m

B
0∶t−1, m

D
0∶t−1) = [P (m

A
t , m

B
t , m

D
t | Xt, xt−1, m

A
0∶t−1, m

B
0∶t−1, m

D
0∶t−1)

P (Xt | xt−1)P (xt−1, mA0∶t−1, m
B
0∶t−1m

D
0∶t−1)]

= [P (mAt , m
B
t , m

D
t | Xt, xt−1)

P (Xt | xt−1)P (xt−1, mA0∶t−1, m
B
0∶t−1m

D
0∶t−1)]

(indep. of measurements from prev. measurements)
= [P (mAt , m

B
t , m

D
t | Xt)

P (Xt | xt−1)P (xt−1, mA0∶t−1, m
B
0∶t−1m

D
0∶t−1)]

(indep. of measurements from prev. states)
= [P (mAt | Xt)P (mBt | Xt)P (mDt | Xt)

P (Xt | xt−1)P (xt−1, mA0∶t−1, m
B
0∶t−1m

D
0∶t−1)]

(indep. of measurements from each other)

All of the expressions on the right side of the above equations should be selected.
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Q2. HMM: Human-Robot Interaction
In the near future, autonomous robots would live among us. Therefore, it is important for the robots to know how to properly
act in the presence of humans. In this question, we are exploring a simplified model of this interaction. Here, we are assuming
that we can observe the robot’s actions at time t, Rt, and an evidence observation, Et, directly caused by the human action,Ht.
Human’s actions and Robot’s actions from the past time-step affect the Human’s and Robot’s actions in the next time-step. In
this problem, we will remain consistent with the convention that capital letters (Ht) refer to random variables and lowercase
letters (ℎt) refer to a particular value the random variable can take. The structure is given below:

. . . Ht−1 Ht Ht+1 . . .

. . .

. . . Rt−1 Rt Rt+1 . . .

Et−1 Et Et+1 . . .

You are supplied with the following probability tables: P (Rt ∣ Et), P (Ht ∣ Ht−1, Rt−1), P (H0), P (Et ∣ Ht).

Let us derive the forward algorithm for this model. We will split our computation into two components, a time-elapse update
expression and a observe update expression.

(a) We would like to incorporate the evidence that we observe at time t. Using the time-lapse update expression we will
derive separately, we would like to find the observe update expression:

O(Ht) = P (Ht|e0∶t, r0∶t)

In other words, we would like to compute the distribution of potential human states at time t given all observations up to
and including time t. In addition to the conditional probability tables associated with the network’s nodes, we are given
T (Ht) = P (Ht ∣ e0∶t−1, r0∶t−1), which we will assume is correctly computed in the time-elapse update that we will derive
in the next part. From the options below, select all the options that both make valid independence assumptions and would
evaluate to the observe update expression.

■ P (Ht∣e0∶t−1,r0∶t−1)P (et∣Ht)P (rt∣et)
∑

ℎt P (ℎt∣e0∶t−1,r0∶t−1)P (et∣ℎt)P (rt∣et)

■ P (Ht∣e0∶t−1,r0∶t−1)P (et∣Ht)
∑

ℎt P (ℎt∣e0∶t−1,r0∶t−1)P (et∣ℎt)

□
∑

et P (Ht∣e0∶t−1,r0∶t−1)P (et∣Ht)
∑

ℎt P (ℎt∣e0∶t−1,r0∶t−1)P (et∣rt−1,Ht−1)

□ ∑

rt−1
P (Ht ∣ e0∶t−1, r0∶t−1)P (rt−1 ∣ et−1)

□ ∑

rt
P (Ht ∣ e0∶t−1, r0∶t−1)P (rt ∣ rt−1, et)

□ ∑

ℎt+1
P (Ht ∣ e0∶t−1, r0∶t−1)P (ℎt+1 ∣ rt)

P (Ht|e0∶t, r0∶t) =
P (Ht, e0∶t, e0∶t)

∑

ℎt
P (ℎt, e0∶t, e0∶t)

=
P (Ht ∣ e0∶t−1, r0∶t−1)P (et ∣ Ht)P (rt ∣ et)

P (rt ∣ et)
∑

ℎt
P (ℎt ∣ e0∶t−1, r0∶t−1)P (et ∣ ℎt)
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The structure below is identical to the one in the beginning of the question and is repeated for your convenience.

. . . Ht−1 Ht Ht+1 . . .

. . .

. . . Rt−1 Rt Rt+1 . . .

Et−1 Et Et+1 . . .

(b) We are interested in predicting what the state of human is at time t (Ht), given all the observations through t−1. Therefore,
the time-elapse update expression has the following form:

T (Ht) = P (Ht|e0∶t−1, r0∶t−1)

Derive an expression for the given time-elapse update above using the probability tables provided in the question and the
observe update expression,O(Ht−1) = P (Ht−1|e0∶t−1, r0∶t−1). Write your final expression in the space provided at below.
You may use the function O in your solution if you prefer.
The derivation of the time-elapse update for this setup is similar to the one we have seen in lecture; however, here, we
have additional observations and dependencies.

P (Ht|e0∶t−1, r0∶t−1) =
∑

ℎt−1

P (Ht, ℎt−1 ∣ e0∶t−1, r0∶t−1)

=
∑

ℎt−1

P (Ht ∣ ℎt−1, rt−1)P (ℎt−1 ∣ e0∶t−1, r0∶t−1)

P (Ht|e0∶t−1, r0∶t−1) =
∑

ℎt−1
P (Ht ∣ ℎt−1, rt−1)P (ℎt−1 ∣ e0∶t−1, r0∶t−1)
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Q3. [Timed: 15mins] We Are Getting Close...
The CS 188 TAs have built an autonomous vehicle, and it’s finally on the street! Approaching a crossroad, our vehicle must
avoid bumping into pedestrians. However, how close are we?
X is the signal received from sensors on our vehicle. We have a estimation model E, which estimates the current distance of any
object in our view. Our vehicle also needs a model to detect objects and label their classes as one of {pedestrian, stop sign, road,
other}. The TAs trained a detection model D that does the above and with a simple classification, outputs one of {no pedestrian,
pedestrian on the road, pedestrian beside the stop sign}. Our vehicle has a control operator C, which determines the velocity by
changing the acceleration.

(a) For the above Dynamic Bayes Net, complete the equations for performing updates. (Hint: think about the prediction
update and observation update equations in the forward algorithm for HMMs.)

Time elapse: (i) = (ii) (iii) (iv) P
(

xt−1|e0∶t−1, d0∶t−1, c0∶t−1
)

(i) # P (xt)  P
(

xt|e0∶t−1, d0∶t−1, c0∶t−1
) # P

(

et, dt, ct|e0∶t−1, d0∶t−1, c0∶t−1
)

(ii) # P (c0∶t−1) # P (x0∶t−1, c0∶t−1) # P (e0∶t−1, d0∶t−1, c0∶t−1)
# P (e0∶t, d0∶t, c0∶t)  1

(iii)  Σxt−1 # Σxt # maxxt−1 # maxxt # 1

(iv) # P (xt−1|xt−2) # P (xt−1, xt−2) # P (xt|e0∶t−1, d0∶t−1, c0∶t−1)
# P (xt|xt−1) # P (xt, xt−1) # P (xt, e0∶t−1, d0∶t−1, c0∶t−1)
 P (xt|xt−1, ct−1) # P (xt, xt−1, ct−1) # 1

Recall the prediction update of forward algorithm: P (xt|o0∶t−1) = Σxt−1P (xt|xt−1)P
(

xt−1|o0∶t−1
)

, where o is the obser-
vation. Here it is similar, despite that there are several observations at each time, which means ot corresponds to et, dt, ct
for each t, and that X is dependent on the C value of the previous time, so we need P (xt|xt−1, ct−1) instead of P (xt|xt−1).
Also note that X is independent of Dt−1, Et−1 given Ct−1, Xt−1.
Update to incorporate new evidence at time t:
P
(

xt|e0∶t, d0∶t, c0∶t
)

= (v) (vi) (vii) Your choice for (i)

(v) # (

P
(

ct|c0∶t−1
))−1 # (

P
(

et|e0∶t−1
)

P
(

dt|d0∶t−1
)

P
(

ct|c0∶t−1
))−1

 (

P
(

et, dt, ct|e0∶t−1, d0∶t−1, c0∶t−1
))−1 # (

P
(

e0∶t−1|et
)

P
(

d0∶t−1|dt
)

P
(

c0∶t−1|ct
))−1

# (

P
(

e0∶t−1, d0∶t−1, c0∶t−1|et, dt, ct
))−1 # 1

(vi) # Σxt−1 # Σxt # Σxt−1,xt # maxxt−1 # maxxt  1

(vii) □ P (xt|et, dt, ct) □ P (xt, et, dt, ct)
□ P (xt|et, dt, ct, ct−1) □ P (xt, et, dt, ct, ct−1)
■ P (et, dt|xt)P (ct|et, dt, ct−1) □ P (et, dt, ct|xt) # 1

Recall the observation update of forward algorithm: P (xt|o0∶t) ∝ P (xt, ot|o0∶t−1) = P (ot|xt)P (xt|o0∶t−1).
Here the observations ot corresponds to et, dt, ct for each t. Apply the Chain Rule, we are having
P
(

xt|e0∶t, d0∶t, c0∶t
)

∝ P
(

xt, et, dt, ct|e0∶t−1, d0∶t−1, c0∶t−1
)

= P (et, dt, ct|xt, ct−1)P (xt|e0∶t−1, d0∶t−1, c0∶t−1)
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= P (et, dt|xt)P (ct|et, dt, ct−1)P (xt|e0∶t−1, d0∶t−1, c0∶t−1).
Note that in P (et, dt, ct|xt, ct−1), we cannot omit ct−1 due to the arrow between ct and ct−1.
To calculate the normalizing constant, use Bayes Rule: P

(

xt|e0∶t, d0∶t, c0∶t
)

= P (xt,et,dt,ct|e0∶t−1,d0∶t−1,c0∶t−1)
P (et,dt,ct|e0∶t−1,d0∶t−1,c0∶t−1)

.

(viii) Suppose we want to do the above updates in one step and use normalization to reduce computation. Select all the
terms that are not explicitly calculated in this implementation.
DO NOT include the choices if their values are 1.

□ (ii) □ (iii) □ (iv) ■ (v) □ (vi) □ (vii) # None of the above

(v) is a constant, so we don’t calculate it during implementation and simply do a normalization instead. Everything else
is necessary.

(b) Suppose X outputs 1024 × 1024 greyscale images and our vehicle stays stationary. As before, E includes precise estima-
tion of the distance between our vehicle and the pedestrian evaluated from outputs of X. Unfortunately, a power outage
happened, and before the power is restored, E will not be available for our vehicle. But we still have the detection model
D, which outputs one of {no pedestrian, pedestrian on the road, pedestrian beside the stop sign} for each state.

(i) During the power outage, it is best to
# do particle filtering because the particles are easier to track for D than for both D and E
 do particle filtering because of memory constraints
# do particle filtering, but not for the reasons above
# do exact inference because it saves computation
# do exact inference, but not for the reason above
E is unavailable and C does not change its value since our vehicle stays stationary, so we only considers X and D.
Although D has only 3 possible values, X is huge and it is impossible to store the belief distribution.

(ii) The power outage was longer than expected. As the sensor outputs of X have degraded to 2 × 2 binary images, it is
best to
# do particle filtering because the particles are easier to track for D than for both D and E
# do particle filtering because of memory constraints
# do particle filtering, but not for the reasons above
# do exact inference because it saves computation
 do exact inference, but not for the reason above
In this case we do not have the "X is huge" problem in (i), and we can do exact inference, which is always more
accurate than particle filtering and thus more favorable in this setting.

(iii) After power is restored and we have E, it is reasonable to
 do particle filtering because of memory constraints
# do particle filtering, but not for the reason above
# do exact inference because E gives more valuable information than D
# do exact inference because it’s impractical to do particle filtering for E
# do exact inference, but not for the reasons above
The belief distribution is too big to store in memory.
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(c) Now we formulate the Dynamic Bayes Net for this question into a non-deterministic two-player game (analogous to MDP
in single-player setting). Each state S = (X,E,D).
There are 2 agents in the game: our vehicle (with action set A), and a pedestrian (with action set B). The vehicle and the
pedestrian take turns to perform their actions.
The TAs implemented 3 modes for the autonomous vehicle to act in the same space with the kind pedestrian, the confused
pedestrian, and the naughty pedestrian. In each round of testing, a TA will be the pedestrian, and one of the modes will
be tested. The vehicle and the pedestrian are both in the corresponding mode.
Below, Q∗v is the Q-function for the autonomous vehicle. For each subquestion, given the standard notation for an MDP,
select the expression fn that would complete the blank part of the Q-Value Iteration under the specified formulation.

Q∗v(s, a) =
∑

s′ T (s, a, s′)[R(s, a, s′) + 
 ]

f1 =
∑

b∈B
∑

s′′
(

T
(

s′, b, s′′
) [

R
(

s′, b, s′′
)

+ 
 maxa′∈AQ∗v
(

s′′, a′
)])

f2 = maxb∈B
∑

s′′
(

T
(

s′, b, s′′
) [

R
(

s′, b, s′′
)

+ 
 maxa′∈AQ∗v
(

s′′, a′
)])

f3 = minb∈B
∑

s′′
(

T
(

s′, b, s′′
) [

R
(

s′, b, s′′
)

+ 
 maxa′∈AQ∗v
(

s′′, a′
)])

f4 =
∑

b∈B
∑

s′′
(

T
(

s′, b, s′′
)

[

R
(

s′, b, s′′
)

+ 
 1
|B| maxa′∈AQ

∗
v
(

s′′, a′
)

])

f5 = maxa′∈AQ∗v
(

s′, a′
)

f6 = mina′∈AQ∗v
(

s′, a′
)

f7 =
1
|A|

∑

a′∈AQ
∗
v
(

s′, a′
)

(i) The kind pedestrian that acts friendly, maximizing the vehicle’s utility.
□ f1 ■ f2 □ f3 □ f4 □ f5 □ f6 □ f7 # None of the above

(ii) The confused pedestrian that acts randomly.
□ f1 □ f2 □ f3 □ f4 ■ f5 □ f6 □ f7 # None of the above

(iii) The naughty pedestrian that performs adversarial actions, minimizing the vehicle’s utility.
□ f1 □ f2 ■ f3 □ f4 □ f5 □ f6 □ f7 # None of the above
Recall the q-value iteration formula: Qk+1(s, a)←

∑

s′ T
(

s, a, s′
) [

R
(

s, a, s′
)

+ 
 maxa′ Qk
(

s′, a′
)]

.
Here it is similar, but in addition to the vehicle, there’s also a pedestrian taking actions from a different set, so we
need to do something similar for the pedestrian, as in f1, f2, f3, f4. That is, instead of using the maximumQv right
away, we substitute that with the q-value iteration formula for the pedestrian with respect to Qv.
The value of this formula is maximized (as in f2) in the case of the kind pedestrian,
minimized (as in f3) in the case of the naughty pedestrian,
and averaged in the case of the naughty pedestrian, which would be
1
|B|

∑

b∈B
∑

s′′
(

T
(

s′, b, s′′
) [

R
(

s′, b, s′′
)

+ 
 maxa′∈AQ∗v
(

s′′, a′
)])

.
Hence f1 and f4 are incorrect. Since the pedestrian is acting completely randomly, we can include the pedestrian in
the transition dynamics and just use regular q-value iteration, which is f5.
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