1 Variable Elimination

Using the same Bayes Net (shown below), we want to compute $P(Y \mid+z)$. All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: X, T, U, V, W.

Complete the following description of the factors generated in this process:
After inserting evidence, we have the following factors to start out with:

$$
P(T), P(U \mid T), P(V \mid T), P(W \mid T), P(X \mid T), P(Y \mid V, W), P(+z \mid X)
$$

(a) When eliminating X we generate a new factor f_{1} as follows, which leaves us with the factors:

$$
f_{1}(+z \mid T)=\sum_{x} P(x \mid T) P(+z \mid x) \quad P(T), P(U \mid T), P(V \mid T), P(W \mid T), P(Y \mid V, W), f_{1}(+z \mid T)
$$

(b) When eliminating T we generate a new factor f_{2} as follows, which leaves us with the factors:

$$
f_{2}(U, V, W,+z)=\sum_{t} P(t) P(U \mid t) P(V \mid t) P(W \mid t) f_{1}(+z \mid t) \quad P(Y \mid V, W), f_{2}(U, V, W,+z)
$$

(c) When eliminating U we generate a new factor f_{3} as follows, which leaves us with the factors:

$$
f_{3}(V, W,+z)=\sum_{u} f_{2}(u, V, W,+z) \quad P(Y \mid V, W), f_{3}(V, W,+z)
$$

Note that U could have just been deleted from the original graph, because $\sum_{u} P(U \mid t)=1$. We can see this in the graph: we can remove any leaf node that is not a query variable or an evidence variable.
(d) When eliminating V we generate a new factor f_{4} as follows, which leaves us with the factors:

$$
f_{4}(W, Y,+z)=\sum_{v} f_{3}(v, W,+z) P(Y \mid v, W) \quad f_{4}(W, Y,+z)
$$

(e) When eliminating W we generate a new factor f_{5} as follows, which leaves us with the factors:

$$
f_{5}(Y,+z)=\sum_{w} f_{4}(w, Y,+z) \quad f_{5}(Y,+z)
$$

(f) How would you obtain $P(Y \mid+z)$ from the factors left above:

Simply renormalize $f_{5}(Y,+z)$ to obtain $P(Y \mid+z)$. Concretely,

$$
P(y \mid+z)=\frac{f_{5}(y,+z)}{\sum_{y^{\prime}} f_{5}\left(y^{\prime},+z\right)}
$$

(g) What is the size of the largest factor that gets generated during the above process?
$f_{2}(U, V, W,+z)$. This contains 3 unconditioned variables, so it will have $2^{3}=8$ probability entries (U, V, W are binary variables, and we only need to store the probability for $+z$ for each possible setting of these variables).
(m) Does there exist a better elimination ordering (one which generates smaller largest factors)?

Yes. One such ordering is X, U, T, V, W. All factors generated with this ordering contain at most 2 unconditioned variables, so the tables will have at most $2^{2}=4$ probability entries (as all variables are binary).

