
CS 188
Summer 2022 Regular Discussion 5A Solutions
Q1. Bayes’ Nets Sampling
Assume the following Bayes’ net, and the corresponding distributions over the variables in the Bayes’ net:

BA C D
P (B|A)

�a �b 2/3
�a +b 1/3
+a �b 4/5
+a +b 1/5

P (A)
�a 3/4
+a 1/4

P (C|B)
�b �c 1/4
�b +c 3/4
+b �c 1/2
+b +c 1/2

P (D|C)
�c �d 1/8
�c +d 7/8
+c �d 5/6
+c +d 1/6

(a) You are given the following samples:

+a + b − c − d
+a − b + c − d

−a + b + c − d

−a − b + c − d

+a − b − c + d

+a + b + c − d

−a + b − c + d

−a − b + c − d

(i) Assume that these samples came from performing Prior Sampling, and calculate the sample estimate
of P (+c).
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(ii) Now we will estimate P (+c | +a,−d). Above, clearly cross out the samples that would not be used
when doing Rejection Sampling for this task, and write down the sample estimate of P (+c | +a,−d)
below.
2/3

(b) Using Likelihood Weighting Sampling to estimate P (−a | +b,−d), the following samples were obtained.
Fill in the weight of each sample in the corresponding row.

Sample Weight

−a + b + c − d P (+b | −a)P (−d | +c) = 1/3 ∗ 5/6 = 5/18 = 0.277

+a + b + c − d P (+b | +a)P (−d | +c) = 1/5 ∗ 5/6 = 5/30 = 1/6 = 0.17

+a + b − c − d P (+b | +a)P (−d | −c) = 1/5 ∗ 1/8 = 1/40 = 0.025

−a + b − c − d P (+b | −a)P (−d | −c) = 1/3 ∗ 1/8 = 1/24 = 0.042

(c) From the weighted samples in the previous question, estimate P (−a | +b,−d).

5/18+1/24
5/18+5/30+1/40+1/24 = 0.625

(d) Which query is better suited for likelihood weighting, P (D | A) or P (A | D)? Justify your answer in one
sentence.

P (D | A) is better suited for likelihood weighting sampling, because likelihood weighting conditions only
on upstream evidence.
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(e) Recall that during Gibbs Sampling, samples are generated through an iterative process.

Assume that the only evidence that is available is A = +a. Clearly fill in the circle(s) of the sequence(s)
below that could have been generated by Gibbs Sampling.

Sequence 1

1 : +a −b −c +d
2 : +a −b −c +d
3 : +a −b +c +d

Sequence 2

1 : +a −b −c +d
2 : +a −b −c −d
3 : −a −b −c +d

Sequence 3

1 : +a −b −c +d
2 : +a −b −c −d
3 : +a +b −c −d

Sequence 4

1 : +a −b −c +d
2 : +a −b −c −d
3 : +a +b −c +d

Gibbs sampling updates one variable at a time and never changes the evidence.

The first and third sequences have at most one variable change per row, and hence could have been
generated from Gibbs sampling. In sequence 2, the evidence variable is changed. In sequence 4, the
second and third samples have both B and D changing.
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2 HMMs

V0 V1 V2 Vn Vn+1

Consider a Markov model like the one above. For the first three parts of this problem, assume the domain of
our variables is {a, b}. Fill in the table below with the probability of being in each state after a large number
of transitions, when P (Vn) = P (Vn+1). If the values never reach a point when P (Vn) = P (Vn+1), write ‘None’.

(a) In the left part of the table, assume that we start with a uniform distribution (P (V0 = a) = P (V0 = b) =
0.5). In the right part of the table, assume that we start with the distribution that has P (V0 = a) = 1.0.

P (Vn) given that P (V0) is uniform P (Vn) given that P (V0 = a) = 1.0
Transition Probabilities Vn = a Vn = b Vn = a Vn = b

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b
a 0.5 0.5
b 0.5 0.5

0.5 0.5 0.5 0.5

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b
a 0.9 0.1
b 0.3 0.7

0.75 0.25 0.75 0.25

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b
a 0.0 1.0
b 1.0 0.0

0.5 0.5 None None

(b) For this part our variables have the domain {a, b, c}. Fill in the table at the bottom with the probability
of being in each state after a large number of transitions, when P (Vn) = P (Vn+1). In the left part of the
table, assume that we start with a uniform distribution (P (V0 = a) = P (V0 = b) = P (V0 = c) = 1

3 ). In
the right part of the table, assume that we start with the distribution that has P (V0 = a) = 1.0.

P (Vi | Vi−1)
Vi−1 Vi = a Vi = b Vi = c
a 0.5 0.5 0.0
b 0.5 0.5 0.0
c 0.0 0.0 1.0
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P (Vn) given that P (V0) is uniform P (Vn) given that P (V0 = a) = 1.0
a b c a b c

0.33 0.33 0.33 0.5 0.5 0.0
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(c) Now we will consider a Hidden Markov Model, and look at properties of the Viterbi Algorithm. The
Viterbi algorithm finds the most probable sequence of hidden states X1:S given a sequence of observations
y1:S . Recall that for the canonical HMM structure, the Viterbi algorithm performs the following update
at each time step:

mt[xt] = P (yt|xt)max
xt−1

[P (xt|xt−1)mt−1[xt−1]]

Assume we have an HMM where:
• The hidden variable X can take on H values

• The (observed) emission variable Y can take on E values

• Our sequence has S steps

(d) (i) What is the run time of the Viterbi algorithm?

# O(SEH) # O(SEH2)  O(SH2)

# O(SH) # O(EH) # O(EH2)

# O(SH2 + SEH)

Ignoring the storage of the emission probabilities, P (Yt|Xt), and the transition probabilities,
P (Xt|Xt−1), what are the storage requirements of the Viterbi algorithm?

# O(S) # O(E) # O(H)

 O(SH) # O(SE) # O(EH)

# O(S +H) # O(S + E) # O(E +H)

# O(SEH)

Now, assume that most of the transitions in our HMM have probability zero. In particular, suppose
that for any given hidden state value, there are only K possible next state values for which the
transition probability is non-zero. To exploit this sparsity, we change the Viterbi Algorithm to only
consider the non-zero transition edges during each max computation inside each update. You can
think of this as the Viterbi algorithm ignoring edges that correspond to zero probability transitions
in the transition lattice diagram.

(ii) What is the run time of this modified algorithm?

# O(SEH) # O(SEH2) # O(SH2)

# O(SH) # O(EH) # O(EH2)

# O(SH2 + SEH)

# O(SEK) # O(SEHK)  O(SHK)

# O(SK) # O(EK) # O(EHK)

# O(SK + SEK) # O(SHK + SEK)

Ignoring the storage of the emission probabilities, P (Yt|Xt), and the transition probabilities,
P (Xt|Xt−1), what are the storage requirements of this modified Viterbi algorithm?

# O(S) # O(E) # O(H)

 O(SH) # O(SE) # O(EH)

# O(S +H) # O(S + E) # O(E +H)

# O(SEH)

# O(K) # O(SK) # O(EK)

# O(HK) # O(S +K) # O(E +K)

# O(H +K) # O(SEK)
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