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Q1. VPI
You are the latest contestant on Monty Hall’s game show. In the game, there are n closed doors: behind one
door is a car (U(car) = 1000), while the other n− 1 doors each have a goat behind them (U(goat) = 10). You
are permitted to open exactly one door and claim the prize behind it. You begin by choosing a door uniformly
at random.

(a) What is your expected utility? (1000 ∗ 1
n + 10 ∗ n−1

n = 10 + 990 ∗ 1
n )

We can calculate the expected utility via the usual formula of expectation, or we can note that there is
a guaranteed utility of 10, with a small probability of a bonus utility. The latter is a bit simpler, so the
answers to the following parts use this form.

(b) After you choose a door but before you open it, Monty offers to open k other doors, each of which are
guaranteed to have a goat behind it. If you accept this offer, should you keep your original choice of a
door, or switch to a new door?

EU(keep):10 + 990 ∗ 1
n

EU(switch): 10 + 990 ∗ (n−1)
n∗(n−k−1)

Action that achieves MEU : switch

The expected utility if we keep must be the same as the answer from the previous part: the probability
that we have a winning door has not changed at all, since we have gotten no meaningful information.
In order to win a car by switching, we must have chosen a goat door previously (probability n−1

n ) and
then switch to the car door (probability 1

n−k−1 ).
Since n− 1 > n− k − 1 for positive k, switching gets a larger expected utility.

(c) What is the value of the information that Monty is offering you? 990 ∗ 1
n ∗ k

n−k−1
The formula for VPI is MEU(e) − MEU(∅). Thus, we want the difference between EU(switch) (the
optimal action if Monty opens the doors) and our expected utility from part (a).
(It is true that EU(keep) happens to have the same numeric expression as in part (a), but this fact is not
meaningful in answering this part.)

(d) Monty is changing his offer! After you choose your initial door, you are given the offer to choose any other
door and open this second door. If you do, after you see what is inside the other door, you may switch
your initial choice (to the newly opened door) or keep your initial choice. What is the value of this new
offer? 990

n
Intuitively, if we take this offer, it is as if we just chose two doors in the beginning, and we win if either
door has the car behind it. Unlike in the previous parts, if the new door has a goat behind it, it is not
more optimal to switch doors.
Mathematically, letting Di be the event that door i has the car, we can calculate this as P (D2 ∪D1) =
P (D1) + P (D2) = 1/n + 1/n = 2/n, to see that MEU(offer) = 10 + 990 ∗ 2

n . Subtracting the expected
utility without taking the offer, we are left with 990 ∗ 1

n .

(e) Monty is generalizing his offer: you can pay $d3 to open d doors as in the previous part. (Assume that
U($x) = x.) You may now switch your choice to any of the open doors (or keep your initial choice). What

is the largest value of d for which it would be rational to accept the offer? d =
√

990
n

It is a key insight (whether intuitive or determined mathematically) that the answer to the previous part
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is constant for each successive door we open. Thus, the value of opening d doors is just d∗990∗ 1
n . Setting

this equal to d3, we can solve for d.
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Q2. Planning ahead with HMMs

Pacman is tired of using HMMs to
estimate the location of ghosts. He
wants to use HMMs to plan what ac-
tions to take in order to maximize
his utility. Pacman uses the HMM
(drawn to the right) of length T to
model the planning problem. In the
HMM, X1:T is the sequence of hidden
states of Pacman’s world, A1:T are ac-
tions Pacman can take, and Ut is the
utility Pacman receives at the particu-
lar hidden state Xt. Notice that there
are no evidence variables, and utilities
are not discounted.

. . . Xt−1 Xt Xt+1 . . .

. . . Ut−1 Ut Ut+1

At−1 At At+1

. . .

. . .. . .

(a) The belief at time t is defined as Bt(Xt) = p(Xt|a1:t). The forward algorithm update has the following
form:

Bt(Xt) = (i) (ii) Bt−1(xt−1).

Complete the expression by choosing the option that fills in each blank.

(i) # maxxt−1
 ∑

xt−1
# maxxt

# ∑
xt

# 1

(ii) # p(Xt|xt−1) # p(Xt|xt−1)p(Xt|at) # p(Xt)  p(Xt|xt−1, at) # 1

# None of the above combinations is correct

Bt(Xt) = p(Xt|a1:t)

=
∑
xt−1

p(Xt|xt−1, at)p(xt−1|a1:t−1)

=
∑
xt−1

p(Xt|xt−1, at)Bt−1(xt−1)

(b) Pacman would like to take actions A1:T that maximizes the expected sum of utilities, which has the
following form:

MEU1:T = (i) (ii) (iii) (iv) (v)

Complete the expression by choosing the option that fills in each blank.

(i)  maxa1:T
# maxaT

# ∑
a1:T

# ∑
aT

# 1

(ii) # maxt # ∏T
t=1  ∑T

t=1 # mint # 1

(iii) # ∑
xt,at

 ∑
xt

# ∑
at

# ∑
xT

# 1

(iv) # p(xt|xt−1, at) # p(xt)  Bt(xt) # BT (xT ) # 1

(v) # UT # 1
Ut

# 1
UT

 Ut # 1

# None of the above combinations is correct

MEU1:T = max
a1:T

T∑
t=1

∑
xt

Bt(xt)Ut(xt)
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(c) A greedy ghost now offers to tell Pacman the values of some of the hidden states. Pacman needs your
help to figure out if the ghost’s information is useful. Assume that the transition function p(xt|xt−1, at)
is not deterministic. With respect to the utility Ut, mark all that can be True:

■ VPI(Xt−1|Xt−2) > 0

□ VPI(Xt−2|Xt−1) > 0

■ VPI(Xt−1|Xt−2) = 0

■ VPI(Xt−2|Xt−1) = 0

□ None of the above

It is always possible that VPI = 0. Can guarantee VPI(E|e) is not greater than 0 if E is independent of
parents(U) given e.
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(d) Pacman notices that calculating the beliefs under this model is very slow using exact inference. He
therefore decides to try out various particle filter methods to speed up inference. Order the following
methods by how accurate their estimate of BT (XT ) is? If different methods give an equivalently accurate
estimate, mark them as the same number.

Most
accurate

Least
accurate

Exact inference  1 # 2 # 3 # 4
Particle filtering with no resampling # 1  2 # 3 # 4
Particle filtering with resampling before every time elapse # 1 # 2 # 3  4
Particle filtering with resampling before every other time elapse # 1 # 2  3 # 4

Exact inference will always be more accurate than using a particle filter. When comparing the particle
filter resampling approaches, notice that because there are no observations, each particle will have weight
1. Therefore resampling when particle weights are 1 could lead to particles being lost and hence prove
bad.
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