1 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

(a) What are the maximum likelihood estimates for the tables $P(Y)$, $P(A|Y)$, and $P(B|Y)$?

<table>
<thead>
<tr>
<th>Y</th>
<th>$P(Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

| A | Y | $P(A|Y)$ |
|-----|-----|---------|
| 0 | 0 | 0 |
| 1 | 0 | 1 |

| B | Y | $P(B|Y)$ |
|-----|-----|---------|
| 0 | 0 | 0 |
| 1 | 1 | 1 |

(b) Consider a new data point ($A = 1$, $B = 1$). What label would this classifier assign to this sample?

(c) Let’s use Laplace Smoothing to smooth out our distribution. Compute the new distribution for $P(A|Y)$ given Laplace Smoothing with $k = 2$.

| A | Y | $P(A|Y)$ |
|-----|-----|---------|
| 0 | 0 | 0 |
| 1 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 1 | 1 |
2 **Perceptron**

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to read a script you have and rate it on a scale of 1 to 4. The critics are not perfect; here are five data points including the critics’ scores and the performance of the movie:

<table>
<thead>
<tr>
<th>#</th>
<th>Movie Name</th>
<th>A</th>
<th>B</th>
<th>Profit?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pellet Power</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Ghosts!</td>
<td>3</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Pac is Bac</td>
<td>2</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Not a Pizza</td>
<td>3</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Endless Maze</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

a First, you would like to examine the linear separability of the data. Plot the data on the 2D plane above; label profitable movies with + and non-profitable movies with − and determine if the data are linearly separable.

b Now you decide to use a perceptron to classify your data. Suppose you directly use the scores given above as features, together with a bias feature. That is $f_0 = 1$, $f_1 =$ score given by A and $f_2 =$ score given by B.

Run one pass through the data with the perceptron algorithm, filling out the table below. Go through the data points in order, e.g. using data point #1 at step 1.

<table>
<thead>
<tr>
<th>step</th>
<th>Weights</th>
<th>Score</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[-1, 0, 0]</td>
<td>$-1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = -1$</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final weights:

c Have weights been learned that separate the data?

d More generally, irrespective of the training data, you want to know if your features are powerful enough to allow you to handle a range of scenarios. Circle the scenarios for which a perceptron using the features above can indeed perfectly classify movies which are profitable according to the given rules:

a Your reviewers are awesome: if the total of their scores is more than 8, then the movie will definitely be profitable, and otherwise it won’t be.

b Your reviewers are art critics. Your movie will be profitable if and only if each reviewer gives either a score of 2 or a score of 3.

c Your reviewers have weird but different tastes. Your movie will be profitable if and only if both reviewers agree.