
CS 188 Summer 2022 Regular Discussion 7A Solutions

1 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

(a) What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

	A	Y	P(A Y)	B	Y	P(B Y)
$Y \mid P(Y)$	0	0	1/6	0	0	1/3
$0 \frac{3}{5}$	1	0	5/6	1	0	2/3
$1 \ 2/5$	0	1	1/4	0	1	1/4
	1	1	3/4	1	1	3/4

(b) Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

$$P(Y = 0, A = 1, B = 1) = P(Y = 0)P(A = 1|Y = 0)P(B = 1|Y = 0)$$
(1)

$$= (3/5)(5/6)(2/3) \tag{2}$$

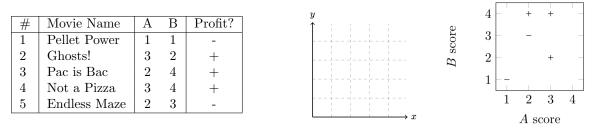
$$=1/3$$
 (3)

$$P(Y = 1, A = 1, B = 1) = P(Y = 1)P(A = 1|Y = 1)P(B = 1|Y = 1)$$
(4)

$$(2/5)(3/4)(3/4) \tag{5}$$

$$= 9/40$$
 (6)

(7)


Our classifier will predict label 0.

(c) Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k = 2.

A	Y	P(A Y)
0	0	3/10
1	0	7/10
0	1	3/8
1	1	5/8

2 Perceptron

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to read a script you have and rate it on a scale of 1 to 4. The critics are not perfect; here are five data points including the critics' scores and the performance of the movie:

a First, you would like to examine the linear separability of the data. Plot the data on the 2D plane above; label profitable movies with + and non-profitable movies with - and determine if the data are linearly separable.

The data are linearly separable.

b Now you decide to use a perceptron to classify your data. Suppose you directly use the scores given above as features, together with a bias feature. That is $f_0 = 1$, $f_1 =$ score given by A and $f_2 =$ score given by B.

Run one pass through the data with the perceptron algorithm, filling out the table below. Go through the data points in order, e.g. using data point #1 at step 1.

step	Weights	Score	Correct?
1	[-1, 0, 0]	$-1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = -1$	yes
2	[-1, 0, 0]	$-1 \cdot 1 + 0 \cdot 3 + 0 \cdot 2 = -1$	no
3	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 2 + 2 \cdot 4 = 14$	yes
4	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 3 + 2 \cdot 4 = 17$	yes
5	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 2 + 2 \cdot 3 = 12$	no

Final weights: [-1, 1, -1]

c Have weights been learned that separate the data? With the current weights, points will be classified as positive if $-1 \cdot 1 + 1 \cdot A + -1 \cdot B \ge 0$, or $A - B \ge 1$. So we will have incorrect predictions for data points 3:

 $-1 \cdot 1 + 1 \cdot 2 + -1 \cdot 4 = -3 < 0$

and 4:

$$-1 \cdot 1 + 1 \cdot 3 + -1 \cdot 4 = -2 < 0$$

Note that although point 2 has $w \cdot f = 0$, it will be classified as positive (since we classify as positive if $w \cdot f \ge 0$).

- d More generally, irrespective of the training data, you want to know if your features are powerful enough to allow you to handle a range of scenarios. Circle the scenarios for which a perceptron using the features above can indeed perfectly classify movies which are profitable according to the given rules:
 - a Your reviewers are awesome: if the total of their scores is more than 8, then the movie will definitely be profitable, and otherwise it won't be. Can classify (consider weights [-8, 1, 1])

- b Your reviewers are art critics. Your movie will be profitable if and only if each reviewer gives either a score of 2 or a score of 3. Cannot classify
- c Your reviewers have weird but different tastes. Your movie will be profitable if and only if both reviewers agree. Cannot classify