
CS 188
Summer 2022 Midterm Review CSPs Solutions
Q1. CSPs
In this question we are considering CSPs for map coloring. Each region on the map is a variable, and their values
are chosen from {black, gray, white}. Adjacent regions cannot have the same color. The figures below show the
constraint graphs for three CSPs and an assignment for each one. None of the assignments are solutions as each
has a pair of adjacent variables that are white. For both parts of this question, let the score of an assignment
be the number of satisfied constraints (so a higher score is better).

(1) (2) (3)

(a) Consider applying Local Search starting from each of the assignments in the figure above. For each succes-
sor function, indicate whether each configuration is a local optimum and whether it is a global optimum
(note that the CSPs may not have satisfying assignments).

Successor Function CSP Local optimum? Global Optimum?

Change a single variable

(1) Yes No Yes No

(2) Yes No Yes No

(3) Yes No Yes No

Change a single variable, or a pair of variables

(1) Yes No Yes No

(2) Yes No Yes No

(3) Yes No Yes No
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Q2. CSPs
Four people, A, B, C, and D, are all looking to rent space in an apartment building. There are three floors in
the building, 1, 2, and 3 (where 1 is the lowest floor and 3 is the highest). Each person must be assigned to some
floor, but it’s ok if more than one person is living on a floor. We have the following constraints on assignments:

• A and B must not live together on the same floor.

• If A and C live on the same floor, they must both be living on floor 2.

• If A and C live on different floors, one of them must be living on floor 3.

• D must not live on the same floor as anyone else.

• D must live on a higher floor than C.

We will formulate this as a CSP, where each person has a variable and the variable values are floors.

(a) Draw the edges for the constraint graph representing this problem. Use binary constraints only. You do
not need to label the edges.

A B

C D

(b) Suppose we have assigned C = 2. Apply forward checking to the CSP, filling in the boxes next to the
values for each variable that are eliminated:

A ■ 1 □ 2 □ 3

B □ 1 □ 2 □ 3

C □ 2

D ■ 1 ■ 2 □ 3

(c) Starting from the original CSP with full domains (i.e. without assigning any variables or doing the forward
checking in the previous part), enforce arc consistency for the entire CSP graph, filling in the boxes next
to the values that are eliminated for each variable:

A ■ 1 □ 2 □ 3

B □ 1 □ 2 □ 3

C □ 1 □ 2 ■ 3

D ■ 1 □ 2 □ 3

(d) Suppose that we were running local search with the min-conflicts algorithm for this CSP, and currently
have the following variable assignments.

A 3
B 1
C 2
D 3

Which variable would be reassigned, and which value would it be reassigned to? Assume that any ties are
broken alphabetically for variables and in numerical order for values.

2



The variable  A will be assigned the new value # 1
# B  2
# C # 3
# D
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Q3. Satisfying Search
Consider a search problem (S,A, Succ, s0, G), where all actions have cost 1. S is the set of states, A(s) is the
set of legal actions from a state s, Succ(s, a) is the state reached after taking action a in state s, s0 is the start
state, and G(s) is true if and only if s is a goal state.

Suppose we have a search problem where we know that the solution cost is exactly k, but we do not know the
actual solution. The search problems has |S| states and a branching factor of b.

(a) (i) Since the costs are all 1, we decide to run breadth-first tree search. Give the tightest bound on the
worst-case running time of breadth-first tree search in terms of |S|, b, and k.

The running time is O( bk ) This is the normal running time for BFS.

(ii) Unfortunately, we get an out of memory error when we try to use breadth first search. Which of the
following algorithms is the best one to use instead?

# Depth First Search
 Depth First Search limited to depth k
# Iterative Deepening
# Uniform Cost Search

Firstly, notice that depth first search limited to depth k will find the solution, since we know that
the solution is k moves long. Depth First search would explore paths of length larger than k, which
is useless computation. Iterative Deepening would first explore paths of length 1, then 2, and so on,
which is useless computation. Uniform Cost Search is equivalent to BFS when the costs are 1, and
so will probably also have an out of memory error.

Instead of running a search algorithm to find the solution, we can phrase this as a CSP:

Variables: X0, X1, X2, · · ·Xk

Domain of each variable: S, the set of all possible states

Constraints:

1. X0 is the start state, that is, X0 = s0.

2. Xk must be a goal state, that is, G(Xk) has to be true.

3. For every 0 ≤ i < k, (Xi, Xi+1) is an edge in the search graph, that is, there exists an action a ∈ A(Xi)
such that Xi+1 = Succ(Xi, a).

With these constraints, when we get a solution (X0 = s0, X1 = s1, · · ·Xk = sk), the solution to our original
search problem is the path s0 → s1 → · · · → sk.

(b) This is a tree-structured CSP. Illustrate this by drawing the constraint graph for k = 3 and providing a
linearization order. (For k = 3, the states should be named X0, X1, X2, and X3.)

X0 X1 X2 X3

Linearization Order: X0, X1, X2, X3 or X3, X2, X1, X0, although others are possible.
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(c) We can solve this CSP using the tree-structured CSP algorithm. You can make the following assumptions:

1. For any state s, computing G(s) takes O(1) time.

2. Checking consistency of a single arc F → G takes O(fg) time, where f is the number of remaining
values that F can take on and g is the number of remaining values that G can take on.

Remember that the search problem has a solution cost of exactly k, |S| states, and a branching factor of
b.

(i) Give the tightest bound on the time taken to enforce unary constraints, in terms of |S|, b, and k.

The running time to enforce unary constraints is O( |S| )

For the first constraint X0 = s0, we just need to change the domain of X0 to {s0} For the constraint
that Xk is a goal state, we need to compute G(s) for all states s, which takes O(|S|) time.

(ii) Give the tightest bound on the time taken to run the backward pass, in terms of |S|, b, and k.

The running time for the backward pass is O( k|S|2 )

The backward pass simply enforces the consistency of k arcs, each of which takes O(|S|2) time, for a
total of O(k|S|2) time.

(iii) Give the tightest bound on the time taken to run the forward pass, in terms of |S|, b, and k.

The running time for the forward pass is O( k|S| )

The forward pass assigns values to variables in order, and then enforces consistency of an arc so that
the values for the next variable are all legal. When enforcing the consistency of Xi+1 → Xi, Xi has
already been assigned, so the time taken is O(|S| · 1) = O(|S|). This is done for each of the k arcs,
for a total of O(k|S|) time.

We would also accept O(kb), on the basis that after assigning a variable to Xi, you only need to
restrict Xi+1 to the b possible values that follow Xi.

(d) Suppose s0 → s1 → · · · → sk is a solution to the search problem. Mark all of the following options that
are guaranteed to be true after enforcing unary constraints and running arc consistency.

■ The remaining values of Xi will be si and possibly other values.
□ The remaining values of Xi will be si and nothing else.
□ A solution can be found by setting each Xi to any of the remaining states in its domain.
■ A solution can be found by executing the forward pass of the tree-structured CSP algorithm.
□ None of the above

After enforcing unary constraints and running arc consistency, since this is a tree-structured CSP, we
are guaranteed that all remaining values are part of some solution, but not necessarily all solutions. In
addition, since arc consistency only eliminates impossible values, all the si values will still be present (since
they are part of the solution s0 → s1 → · · · → sk).

Thus, Xi will have si and other values (corresponding to other solutions). However, we cannot set each
Xi to any of the remaining states in its domain, if we set X1 to a state s′ and X2 to s′′, while we know
there is some solution where X1 = s′, and some (possibly different) solution where X2 = s′′, we are not
guaranteed that there is a solution where X1 = s′ and X2 = s′′.

The backward pass of the tree-structured CSP algorithm simply enforces consistency of some arcs. So,
running full arc consistency will eliminate at least all the values that the backward pass would have
eliminated. So, we can run the forward pass to find a solution.

(e) Suppose you have a heuristic h(s). You decide to add more constraints to your CSP (with the hope that
it speeds up the solver by eliminating many states quickly). Mark all of the following options that are
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valid constraints that can be added to the CSP, under the assumption that h(s) is (a) any function (b)
admissible and (c) consistent. Recall that the cost of every action is 1.

Any h(s) h(s) is admissible h(s) is consistent

For every 0 ≤ i ≤ k, h(Xi) ≤ i □ □ □
For every 0 ≤ i ≤ k, h(Xi) ≤ k − i □ ■ ■
For every 0 ≤ i < k, h(Xi+1) ≤ h(Xi)− 1 □ □ □
For every 0 ≤ i < k, h(Xi+1) ≥ h(Xi)− 1 □ □ ■
□ None of the above

If we know nothing about the heuristic function h(s), none of the constraints are valid. (Indeed, it would
be very strange if we were able to write down constraints based on a function that could be anything.)

An admissible heuristic means that the value of the heuristic is an underestimate of the true cost to the
goal. At variableXi, we know that the cost to the goal must be k−i, and so we can infer that h(Xi) ≤ k−i.
As a consequence, it is valid to add the constraints h(Xi) ≤ k − i.

Any consistent heuristic is also admissible, so a consistent heuristic also means that h(Xi) ≤ k − i is
valid. In addition, a consistent heuristic means that the heuristic value drops by at most 1 (the cost)
across an edge. Comparing Xi+1 and Xi, the drop in heuristic value is h(Xi) − h(Xi+1). Thus, we have
h(Xi)−h(Xi+1) ≤ 1, or h(Xi+1) ≥ h(Xi)− 1. Thus it is valid to add that constraint to the CSP as well.

(f) Now suppose we only know that the solution will have ≤ k moves. We do not need to find the optimal
solution - we only need to find some solution of cost ≤ k. Mark all of the following options such that if
you make single change described in that line it will correctly modify the CSP to find some solution of
cost ≤ k. Remember, the CSP can only have unary and binary constraints.

■ Remove the constraints “(Xi, Xi+1) is an edge in the search graph”. Instead, add the constraints
“(Xi, Xi+1) is an edge in the search graph, OR Xi = Xi+1”.

□ Remove the constraints “(Xi, Xi+1) is an edge in the search graph”. Instead, add the constraints
“(Xi, Xi+1) is an edge in the search graph, AND Xi = Xi+1”.

□ Remove the constraint “Xk is a goal state.” Instead, add the constraint “For every 0 ≤ i ≤ k, Xi is
a goal state”.
Remove the constraint “Xk is a goal state.” Instead, add the constraint “There is some i, 0 ≤ i ≤ k, such
that Xi is a goal state”.
□ None of the above

If we say (Xi, Xi+1) is an edge AND Xi = Xi+1, we are forcing all of the variables to be the same state s0
(since they all have to be equal to each other), so that cannot be right.

If we say (Xi, Xi+1) is an edge OR Xi = Xi+1, then basically the constraint says that transitions have to be
made, but we can also choose to not make a transition from i → i+1 (in which case we would have Xi = Xi+1).
This is exactly what we want - this will allow us to make only as many transitions as necessary, and then all
the remaining “extra” states can be set to the previous state to satisfy the constraints.

It does not make sense to say that every state is a goal state - for example, the start state X0 = s0 is usually
not a goal state.

Saying that there is some i such that Xi is a goal state would work. It is not a unary or binary constraint (it
is a constraint on all of the variables). Because of the ambiguity in question statement regarding acceptable
constraints, this option was ignored. (Either filled in or blank was accepted.)
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