Q1. Search Algorithms Potpourri

(a) We will investigate various search algorithms for the following graph. Edges are labeled with their costs, and heuristic values h for states are labeled next to the states. S is the start state, and G is the goal state. In all search algorithms, assume ties are broken in alphabetical order.

(i) Select all boxes that describe the given heuristic values.
\square admissible \squareconsistentNeither
(ii) Given the above heuristics, what is the order that the states are going to be expanded in, assuming we run A* graph search with the heuristic values provided.

(iii) Assuming we run A* graph search with the heuristic values provided, what path is returned?

(iv) Given the above heuristics, what is the order that the states are going to be expanded in, assuming we run greedy graph search with the heuristic values provided.

Index	1	2	3	4	5	Not Expanded
S	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
C	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

(v) What path is returned by greedy graph search?
\bigcirc $S \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow G$
$\bigcirc \rightarrow A \rightarrow C \rightarrow G$$S \rightarrow A \rightarrow C \rightarrow D \rightarrow G$ $S \rightarrow A \rightarrow C \rightarrow D \rightarrow G \quad \bigcirc \quad S \rightarrow A \rightarrow C \rightarrow D \rightarrow G \quad \bigcirc \quad$ None of the above
(b) Consider a complete graph, K_{n}, the undirected graph with n vertices where all n vertices are connected (there is an edge between every pair of vertices), resulting in $\binom{n}{2}$ edges. Please select the maximum possible depth of the resulting tree when the following graph search algorithms are run(assume any possible start and goal vertices).

(c) Given two admissible heuristics h_{A} and h_{B}.
(i) Which of the following are guaranteed to also be admissible heuristics?

$$
\begin{aligned}
& \square h_{A}+h_{B} \quad \square \\
& \square \\
& \square \\
& \min \left(h_{A}, h_{B}\right)
\end{aligned}
$$

(ii) Consider performing A^{*} tree search. Which is generally best to use if we want to expand the fewest number of nodes?

$$
\bigcirc \begin{aligned}
& h_{A}+h_{B} \bigcirc \frac{1}{2}\left(h_{A}\right) \bigcirc \frac{1}{2}\left(h_{B}\right) \bigcirc \frac{1}{2}\left(h_{A}+h_{B}\right) \bigcirc h_{A} * h_{B} \bigcirc \quad \max \left(h_{A}, h_{B}\right) \\
& \min \left(h_{A}, h_{B}\right)
\end{aligned}
$$

(d) Consider performing tree search for some search graph. Let $\operatorname{depth}(n)$ be the depth of search node n and $\operatorname{cost}(n)$ be the total cost from the start state to node n. Let G_{d} be a goal node with minimum depth, and G_{c} be a goal node with minimum total cost. Assume edge costs >0.
(i) For iterative deepening (where we repeatedly run DFS and increase the maximum depth allowed by 1), mark all conditions that are guaranteed to be true for every node n that could be expanded during the search, or mark "None of the above" if none of the conditions are guaranteed.
$\square \operatorname{cost}(n) \leq \operatorname{cost}\left(G_{c}\right)$
$\square \operatorname{cost}(n) \leq \operatorname{cost}\left(G_{d}\right)$
$\square \operatorname{depth}(n) \leq \operatorname{depth}\left(G_{c}\right)$
$\operatorname{depth}(n) \leq \operatorname{depth}\left(G_{d}\right)$
\bigcirc None of the above
(ii) What is necessarily true regarding iterative deepening on any search tree?
\square Complete as opposed to DFS tree search
\square Strictly faster than DFS tree search
\square Strictly faster than BFS tree search
\square More memory efficient than BFS tree search
\square A type of stochastic local search
\bigcirc None of the above

