
CS 188
Summer 2022 Exam Prep 2B Solutions
Q1. CSPs
In this question, you are trying to find a four-digit number satisfying the following conditions:

1. the number is odd,

2. the number only contains the digits 1, 2, 3, 4, and 5,

3. each digit (except the leftmost) is strictly larger than the digit to its left.

(a) CSPs

We will model this as a CSP where the variables are the four digits of our number, and the domains are the
five digits we can choose from. The last variable only has 1, 3, and 5 in its domain since the number must
be odd. The constraints are defined to reflect the third condition above. Thus before we start executing any
algorithms, the domains are

(i) Before assigning anything, enforce arc consistency. Write the values remaining in the domain of each
variable after arc consistency is enforced.

(ii) With the domains you wrote in the previous part, which variable will the MRV (Minimum Remaining
Value) heuristic choose to assign a value to first? If there is a tie, choose the leftmost variable.

# The first digit (leftmost)

# The second digit

# The third digit

 The fourth digit (rightmost)

(iii) Now suppose we assign to the leftmost digit first. Assuming we will continue filtering by enforcing arc
consistency, which value will LCV (Least Constraining Value) choose to assign to the leftmost digit?
Break ties from large (5) to small (1).

■ 1

□ 2

□ 3

□ 4

□ 5

(iv) Now suppose we are running min-conflicts to try to solve this CSP. If we start with the number 1332,
what will our number be after one interation of min-conflicts? Break variable selection ties from left to
right, and break value selection ties from small (1) to large (5).

1232
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(b) The following questions are completely unrelated to the above parts. Assume for these following questions,
there are only binary constraints unless otherwise specified.

(i) [true or false] When enforcing arc consistency in a CSP, the set of values which remain when the algorithm
terminates does not depend on the order in which arcs are processed from the queue.

(ii) [true or false] Once arc consistency is enforced as a pre-processing step, forward checking can be used
during backtracking search to maintain arc consistency for all variables.

False. Forward checking makes the current variable arc-consistent, but doesn?t look ahead and make all
the other variables arc-consistent.

(iii) In a general CSP with n variables, each taking d possible values, what is the worst case time complexity
of enforcing arc consistency using the AC-3 method discussed in class?

# 0 # O(1) # O(nd2)  O(n2d3) # O(dn) # ∞
O(n2d3). There are up to n2 constraints. There are d2 comparisons for enforcing arc consistency per each
constraint, and each constraint can be inserted to the queue up to d times because each variable has at
most d values to delete.

(iv) In a general CSP with n variables, each taking d possible values, what is the maximum number of times
a backtracking search algorithm might have to backtrack (i.e. the number of the times it generates an
assignment, partial or complete, that violates the constraints) before finding a solution or concluding that
none exists?

# 0 # O(1) # O(nd2) # O(n2d3)  O(dn) # ∞
O(dn). In general, the search might have to examine all possible assignments.

(v) What is the maximum number of times a backtracking search algorithm might have to backtrack in a
general CSP, if it is running arc consistency and applying the MRV and LCV heuristics?

# 0 # O(1) # O(nd2) # O(n2d3)  O(dn) # ∞
O(dn). The MRV and LCV heuristics are often helpful to guide the search, but are not guaranteed to
reduce backtracking in the worst case.
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Q2. MedianMiniMax
You’re living in utopia! Despite living in utopia, you still believe that you need to maximize your utility in life, other
people want to minimize your utility, and the world is a 0 sum game. But because you live in utopia, a benevolent
social planner occasionally steps in and chooses an option that is a compromise. Essentially, the social planner
(represented as the pentagon) is a median node that chooses the successor with median utility. Your struggle with
your fellow citizens can be modelled as follows:

There are some nodes that we are sometimes able to prune. In each part, mark all of the terminal nodes such that
there exists a possible situation for which the node can be pruned. In other words, you must consider all
possible pruning situations. Assume that evaluation order is left to right and all Vi’s are distinct.

Note that as long as there exists ANY pruning situation (does not have to be the same situation for every node),
you should mark the node as prunable. Also, alpha-beta pruning does not apply here, simply prune a sub-tree when
you can reason that its value will not affect your final utility.

(a) □ V1

□ V2

□ V3

□ V4

■ None

(b) □ V5

■ V6

■ V7

■ V8

□ None

(c) □ V9

□ V10

■ V11

■ V12

□ None

(d) □ V13

■ V14

■ V15

■ V16

□ None
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Part a:
For the left median node with three children, at least two of the childrens’ values must be known since one of them
will be guaranteed to be the value of the median node passed up to the final maximizer. For this reason, none of the
nodes in part a can be pruned.

Part b (pruning V7, V8 ):
Letmin1,min2,min3 be the values of the three minimizer
nodes in this subtree.

In this case, we may not need to know the final value
min3. The reason for this is that we may be able
to put a bound on its value after exploring only par-
tially, and determine the value of the median node as
either min1 or min2 if min3 ≤ min (min1,min2) or
min3 ≥ max (min1,min2).

We can put an upper bound on min3 by exploring the left
subtree V5, V6 and if max (V5, V6) is lower than both min1

and min2, the median node’s value is set as the smaller of
min1,min2 and we don’t have to explore V7, V8 in Figure
1.

Part b (pruning V6):
It’s possible for us to put a lower bound on min3. If V5

is larger than both min1 and min2, we do not need to
explore V6.

The reason for this is subtle, but if the minimizer
chooses the left subtree, we know that min3 ≥ V5 ≥
max (min1,min2) and we don’t need V6 to get the cor-
rect value for the median node which will be the larger of
min1,min2.

If the minimizer chooses the value of the right subtree,
the value at V6 is unnecessary again since the minimizer
never chose its subtree.
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Part c (pruning V11, V12 ):
Assume the highest maximizer node has a current value
max1 ≥ Z set by the left subtree and the three minimiz-
ers on this right subtree have value min1,min2,min3.

In this part, if min1 ≤ max (V9, V10) ≤ Z, we do not
have to explore V11, V12. Once again, the reasoning is
subtle, but we can now realize if either min2 ≤ Z or
min3 ≤ Z then the value of the right median node is for
sure ≤ Z and is useless.

Only if both min2,min3 ≥ Z will the whole right sub-
tree have an effect on the highest maximizer, but in this
case the exact value of min1 is not needed, just the in-
formation that it is ≤ Z. Clearly in both cases, V11, V12

are not needed since an exact value of min1 is not needed.

We will also take the time to note that if V9 ≥ Z we
do have to continue the exploring as V10 could be even
greater and the final value of the top maximizer, so V10

can’t really be pruned.

Part d (pruning V14, V15, V16 ):
Continuing from part c, if we find that min1 ≤ Z and
min2 ≤ Z we can stop.

We can realize this as soon we explore V13. Once we fig-
ure this out, we know that our median node’s value must
be one of these two values, and neither will replace Z so
we can stop.
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