Q1. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

(b) Draw the Bayes net associated with the following joint distribution:
$P(A) \cdot P(B) \cdot P(C \mid A, B) \cdot P(D \mid C) \cdot P(E \mid B, C)$

(c) Do the following products of factors correspond to a valid joint distribution over the variables A, B, C, D ? (Circle FALSE or TRUE.)

(i)	FALSE	TRUE	$P(A) \cdot P(B) \cdot P(C \mid A) \cdot P(C \mid B) \cdot P(D \mid C)$
(ii)	FALSE	TRUE	$P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$
(iii)	FALSE	TRUE	$P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(C \mid A) \cdot P(D)$
(iv)	FALSE	TRUE	$P(A \mid B) \cdot P(B \mid C) \cdot P(C \mid D) \cdot P(D \mid A)$

(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write "none" if the given set of factors can't be turned into a joint by the inclusion of exactly one more factor.)
(i) $P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(E \mid B, C, D)$
(ii) $P(D) \cdot P(B) \cdot P(C \mid D, B) \cdot P(E \mid C, D, A)$
(e) [Optional - After Learning Variable Elimination] Answer the next questions based off of the Bayes Net below: All variables have domains of $\{-1,0,1\}$

(i) Before eliminating any variables or including any evidence, how many entries does the factor at G have?
(ii) Now we observe $e=1$ and want to query $P(D \mid e=1)$, and you get to pick the first variable to be eliminated.

- Which choice would create the largest factor f_{1} ?
- Which choice would create the smallest factor f_{1} ?

Q2. Probability and Bayes Nets

(a) A, B, and C are random variables with binary domains. How many entries are in the following probability tables and what is the sum of the values in each table? Write a "?" in the box if there is not enough information given.

Table	Size	Sum
$P(A, B \mid C)$		
$P(A \mid+b,+c)$		
$P(+a \mid B)$		

(b) Circle true if the following probability equalities are valid and circle false if they are invalid (leave it blank if you don't wish to risk a guess). Each True/False question is worth 1 points. Leaving a question blank is worth 0 points. Answering incorrectly is worth $\mathbf{- 1}$ points.
No independence assumptions are made.
(i) [true or false] $P(A, B)=P(A \mid B) P(A)$
(ii) [true or false] $P(A \mid B) P(C \mid B)=P(A, C \mid B)$
(iii) [true or false] $P(B, C)=\sum_{a \in A} P(B, C \mid A)$
(iv) [true or false] $P(A, B, C, D)=P(C) P(D \mid C) P(A \mid C, D) P(B \mid A, C, D)$
(c) Space Complexity of Bayes Nets

Consider a joint distribution over N variables. Let k be the domain size for all of these variables, and let d be the maximum indegree of any node in a Bayes net that encodes this distribution.
(i) What is the space complexity of storing the entire joint distribution? Give an answer of the form $O(\cdot)$.
(ii) Draw an example of a Bayes net over four binary variables such that it takes less space to store the Bayes net than to store the joint distribution.
(iii) Draw an example of a Bayes net over four binary variables such that it takes more space to store the Bayes net than to store the joint distribution.

