
CS 188
Summer 2022 Exam Prep 5A Solutions
Q1. We Are Getting Close...
The CS 188 TAs have built an autonomous vehicle, and it’s finally on the street! Approaching a crossroad, our vehicle must
avoid bumping into pedestrians. However, how close are we?
X is the signal received from sensors on our vehicle. We have a estimation model E, which estimates the current distance of any
object in our view. Our vehicle also needs a model to detect objects and label their classes as one of {pedestrian, stop sign, road,
other}. The TAs trained a detection model D that does the above and with a simple classification, outputs one of {no pedestrian,
pedestrian on the road, pedestrian beside the stop sign}. Our vehicle has a control operator C, which determines the velocity by
changing the acceleration.

(a) For the above Dynamic Bayes Net, complete the equations for performing updates. (Hint: think about the prediction
update and observation update equations in the forward algorithm for HMMs.)

Time elapse: (i) = (ii) (iii) (iv) 𝑃
(

𝑥𝑡−1|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
)

(i) # 𝑃 (𝑥𝑡)  𝑃
(

𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
) # 𝑃

(

𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
)

(ii) # 𝑃 (𝑐0∶𝑡−1) # 𝑃 (𝑥0∶𝑡−1, 𝑐0∶𝑡−1) # 𝑃 (𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
# 𝑃 (𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡)  1

(iii)  Σ𝑥𝑡−1 # Σ𝑥𝑡 # max𝑥𝑡−1 # max𝑥𝑡 # 1

(iv) # 𝑃 (𝑥𝑡−1|𝑥𝑡−2) # 𝑃 (𝑥𝑡−1, 𝑥𝑡−2) # 𝑃 (𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
# 𝑃 (𝑥𝑡|𝑥𝑡−1) # 𝑃 (𝑥𝑡, 𝑥𝑡−1) # 𝑃 (𝑥𝑡, 𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
 𝑃 (𝑥𝑡|𝑥𝑡−1, 𝑐𝑡−1) # 𝑃 (𝑥𝑡, 𝑥𝑡−1, 𝑐𝑡−1) # 1

Recall the prediction update of forward algorithm: 𝑃 (𝑥𝑡|𝑜0∶𝑡−1) = Σ𝑥𝑡−1𝑃 (𝑥𝑡|𝑥𝑡−1)𝑃
(

𝑥𝑡−1|𝑜0∶𝑡−1
)

, where o is the obser-
vation. Here it is similar, despite that there are several observations at each time, which means 𝑜𝑡 corresponds to 𝑒𝑡, 𝑑𝑡, 𝑐𝑡
for each t, and that X is dependent on the C value of the previous time, so we need 𝑃 (𝑥𝑡|𝑥𝑡−1, 𝑐𝑡−1) instead of 𝑃 (𝑥𝑡|𝑥𝑡−1).
Also note that 𝑋 is independent of 𝐷𝑡−1, 𝐸𝑡−1 given 𝐶𝑡−1, 𝑋𝑡−1.
Update to incorporate new evidence at time 𝑡:
𝑃
(

𝑥𝑡|𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡
)

= (v) (vi) (vii) Your choice for (i)
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(v) # (

𝑃
(

𝑐𝑡|𝑐0∶𝑡−1
))−1 # (

𝑃
(

𝑒𝑡|𝑒0∶𝑡−1
)

𝑃
(

𝑑𝑡|𝑑0∶𝑡−1
)

𝑃
(

𝑐𝑡|𝑐0∶𝑡−1
))−1

 (

𝑃
(

𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
))−1 # (

𝑃
(

𝑒0∶𝑡−1|𝑒𝑡
)

𝑃
(

𝑑0∶𝑡−1|𝑑𝑡
)

𝑃
(

𝑐0∶𝑡−1|𝑐𝑡
))−1

# (

𝑃
(

𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1|𝑒𝑡, 𝑑𝑡, 𝑐𝑡
))−1 # 1

(vi) # Σ𝑥𝑡−1 # Σ𝑥𝑡 # Σ𝑥𝑡−1,𝑥𝑡 # max𝑥𝑡−1 # max𝑥𝑡  1

(vii) □ 𝑃 (𝑥𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡) □ 𝑃 (𝑥𝑡, 𝑒𝑡, 𝑑𝑡, 𝑐𝑡)
□ 𝑃 (𝑥𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡, 𝑐𝑡−1) □ 𝑃 (𝑥𝑡, 𝑒𝑡, 𝑑𝑡, 𝑐𝑡, 𝑐𝑡−1)
■ 𝑃 (𝑒𝑡, 𝑑𝑡|𝑥𝑡)𝑃 (𝑐𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡−1) □ 𝑃 (𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑥𝑡) # 1

Recall the observation update of forward algorithm: 𝑃 (𝑥𝑡|𝑜0∶𝑡) ∝ 𝑃 (𝑥𝑡, 𝑜𝑡|𝑜0∶𝑡−1) = 𝑃 (𝑜𝑡|𝑥𝑡)𝑃 (𝑥𝑡|𝑜0∶𝑡−1).
Here the observations 𝑜𝑡 corresponds to 𝑒𝑡, 𝑑𝑡, 𝑐𝑡 for each t. Apply the Chain Rule, we are having
𝑃
(

𝑥𝑡|𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡
)

∝ 𝑃
(

𝑥𝑡, 𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1
)

= 𝑃 (𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑥𝑡, 𝑐𝑡−1)𝑃 (𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1)
= 𝑃 (𝑒𝑡, 𝑑𝑡|𝑥𝑡)𝑃 (𝑐𝑡|𝑒𝑡, 𝑑𝑡, 𝑐𝑡−1)𝑃 (𝑥𝑡|𝑒0∶𝑡−1, 𝑑0∶𝑡−1, 𝑐0∶𝑡−1).
Note that in 𝑃 (𝑒𝑡, 𝑑𝑡, 𝑐𝑡|𝑥𝑡, 𝑐𝑡−1), we cannot omit 𝑐𝑡−1 due to the arrow between 𝑐𝑡 and 𝑐𝑡−1.
To calculate the normalizing constant, use Bayes Rule: 𝑃

(

𝑥𝑡|𝑒0∶𝑡, 𝑑0∶𝑡, 𝑐0∶𝑡
)

= 𝑃 (𝑥𝑡,𝑒𝑡,𝑑𝑡,𝑐𝑡|𝑒0∶𝑡−1,𝑑0∶𝑡−1,𝑐0∶𝑡−1)
𝑃 (𝑒𝑡,𝑑𝑡,𝑐𝑡|𝑒0∶𝑡−1,𝑑0∶𝑡−1,𝑐0∶𝑡−1)

.

(viii) Suppose we want to do the above updates in one step and use normalization to reduce computation. Select all the
terms that are not explicitly calculated in this implementation.
DO NOT include the choices if their values are 1.

□ (ii) □ (iii) □ (iv) ■ (v) □ (vi) □ (vii) # None of the above

(v) is a constant, so we don’t calculate it during implementation and simply do a normalization instead. Everything else
is necessary.

(b) Suppose X outputs 1024 × 1024 greyscale images and our vehicle stays stationary. As before, E includes precise estima-
tion of the distance between our vehicle and the pedestrian evaluated from outputs of X. Unfortunately, a power outage
happened, and before the power is restored, E will not be available for our vehicle. But we still have the detection model
D, which outputs one of {no pedestrian, pedestrian on the road, pedestrian beside the stop sign} for each state.

(i) During the power outage, it is best to
# do particle filtering because the particles are easier to track for D than for both D and E
 do particle filtering because of memory constraints
# do particle filtering, but not for the reasons above
# do exact inference because it saves computation
# do exact inference, but not for the reason above
E is unavailable and C does not change its value since our vehicle stays stationary, so we only considers X and D.
Although D has only 3 possible values, X is huge and it is impossible to store the belief distribution.

(ii) The power outage was longer than expected. As the sensor outputs of X have degraded to 2 × 2 binary images, it is
best to
# do particle filtering because the particles are easier to track for D than for both D and E
# do particle filtering because of memory constraints
# do particle filtering, but not for the reasons above
# do exact inference because it saves computation
 do exact inference, but not for the reason above
In this case we do not have the "X is huge" problem in (i), and we can do exact inference, which is always more
accurate than particle filtering and thus more favorable in this setting.

(iii) After power is restored and we have E, it is reasonable to
 do particle filtering because of memory constraints
# do particle filtering, but not for the reason above
# do exact inference because E gives more valuable information than D
# do exact inference because it’s impractical to do particle filtering for E
# do exact inference, but not for the reasons above
The belief distribution is too big to store in memory.
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Q2. Particle Filtering
You’ve chased your arch-nemesis Leland to the Stanford quad. You enlist two robo-watchmen to help find him! The grid below
shows the campus, with ID numbers to label each region. Leland will be moving around the campus. His location at time step 𝑡
will be represented by random variable 𝑋𝑡. Your robo-watchmen will also be on campus, but their locations will be fixed. Robot
1 is always in region 1 and robot 2 is always in region 9. (See the * locations on the map.) At each time step, each robot gives
you a sensor reading to help you determine where Leland is. The sensor reading of robot 1 at time step 𝑡 is represented by the
random variable 𝐸𝑡,1. Similary, robot 2’s sensor reading at time step 𝑡 is 𝐸𝑡,2. The Bayes’ Net to the right shows your model of
Leland’s location and your robots’ sensor readings.

1* 2 3 4 5

6 7 8 9* 10

11 12 13 14 15

𝑋0 𝑋1 𝑋2 ...

𝐸0,1

𝐸0,2

𝐸1,1

𝐸1,2

𝐸2,1

𝐸2,2

In each time step, Leland will either stay in the same region or move to an adjacent region. For example, the available actions
from region 4 are (WEST, EAST, SOUTH, STAY). He chooses between all available actions with equal probability, regardless
of where your robots are. Note: moving off the grid is not considered an available action.

Each robot will detect if Leland is in an adjacent region. For example, the regions adjacent to region 1 are 1, 2, and 6. If Leland
is in an adjacent region, then the robot will report 𝑁𝐸𝐴𝑅 with probability 0.8. If Leland is not in an adjacent region, then the
robot will still report 𝑁𝐸𝐴𝑅, but with probability 0.3.

For example, if Leland is in region 1 at time step 𝑡 the probability tables are:
𝐸 𝑃 (𝐸𝑡,1|𝑋𝑡 = 1) 𝑃 (𝐸𝑡,2|𝑋𝑡 = 1)

𝑁𝐸𝐴𝑅 0.8 0.3
𝐹𝐴𝑅 0.2 0.7

(a) Suppose we are running particle filtering to track Leland’s location, and we start at 𝑡 = 0 with particles [𝑋 = 6, 𝑋 = 14,
𝑋 = 9, 𝑋 = 6]. Apply a forward simulation update to each of the particles using the random numbers in the table below.
Assign region IDs to sample spaces in numerical order. For example, if, for a particular particle, there were three
possible sucessor regions 10, 14 and 15, with associated probabilities, 𝑃 (𝑋 = 10), 𝑃 (𝑋 = 14) and 𝑃 (𝑋 = 15), and the
random number was 0.6, then 10 should be selected if 0.6 ≤ 𝑃 (𝑋 = 10), 14 should be selected if 𝑃 (𝑋 = 10) < 0.6 <
𝑃 (𝑋 = 10) + 𝑃 (𝑋 = 14), and 15 should be selected otherwise.

Particle at 𝑡 = 0 Random number for update Particle after forward simulation update

𝑋 = 6 0.864 11

𝑋 = 14 0.178 9

𝑋 = 9 0.956 14

𝑋 = 6 0.790 11
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(b) Some time passes and you now have particles [𝑋 = 6, 𝑋 = 1, 𝑋 = 7, 𝑋 = 8] at the particular time step, but you have not
yet incorporated your sensor readings at that time step. Your robots are still in regions 1 and 9, and both report 𝑁𝐸𝐴𝑅.
What weight do we assign to each particle in order to incorporate this evidence?

Particle Weight

𝑋 = 6 0.8 * 0.3

𝑋 = 1 0.8 * 0.3

𝑋 = 7 0.3 * 0.3

𝑋 = 8 0.3 * 0.8

(c) To decouple this question from the previous question, let’s say you just incorporated the sensor readings and found the
following weights for each particle (these are not the correct answers to the previous problem!):

Particle Weight

𝑋 = 6 0.1

𝑋 = 1 0.4

𝑋 = 7 0.1

𝑋 = 8 0.2

Normalizing gives us the distribution

𝑋 = 1 ∶ 0.4∕0.8 = 0.5
𝑋 = 6 ∶ 0.1∕0.8 = 0.125
𝑋 = 7 ∶ 0.1∕0.8 = 0.125
𝑋 = 8 ∶ 0.2∕0.8 = 0.25

Use the following random numbers to resample you particles. As on the previous page, assign region IDs to sample
spaces in numerical order.

Random number: 0.596 0.289 0.058 0.765

Particle: 6 1 1 8
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