
CS 188
Summer 2022 Final Review Machine Learning Solutions
Q1. A Nonconvolutional Nontrivial Network
You have a robotic friend MesutBot who has trouble passing Recaptchas (and Turing tests in general). MesutBot
got a 99.99% on the last midterm because he could not determine which squares in the image contained stop
signs. To help him ace the final, you decide to design a few classifiers using the below features.

• A = 1 if the image contains an octagon, else 0.

• B = 1 if the image contains the word STOP, else 0.

– S = 1 if the image contains the letter S, else 0.

– T = 1 if the image contains the letter T, else 0.

– O = 1 if the image contains the letter O, else 0.

– P = 1 if the image contains the letter P, else 0.

• C = 1 if the image is more than 50% red in color, else
0.

• D = 1 if the image contains a post, else 0.

Y

A B C D

S T O P

(a) First, we use a Naive Bayes-inspired approach to determine which images have stop signs based on the
features and Bayes Net above. We use the following features to predict Y = 1 if the image has a stop sign
anywhere, or Y = 0 if it doesn’t.

(i) Which expressions would a Naive Bayes model use to predict the label for B if given the values for
features S = s, T = t, O = o, P = p? Choose all valid expressions.

■ b = argmax
b

P (b)P (s|b)P (t|b)P (o|b)P (p|b)

□ b = argmax
b

P (s|b)P (t|b)P (o|b)P (p|b)

■ b = argmax
b

P (b|s, t, o, p)

■ b = argmax
b

P (b, s, t, o, p)

□ b = argmax
b

P (s, t, o, p|b)
None

Note argmax
b

P (b)P (s|b)P (t|b)P (o|b)P (p|b) = argmax
b

P (b, s, t, o, p), which are both correct. The

conditional probability assumptions from the Bayes Net enable us to write this equality.

Note P (s|b)P (t|b)P (o|b)P (p|b) = P (s, t, o, p|b). This can be read off of the Bayes Net as well, because
all the features are independent given the label B = b.

Finally note argmax
b

P (b|s, t, o, p) = argmax
b

P (b,s,t,o,p)
P (s,t,o,p) = argmax

b
P (b, s, t, o, p) because P (s, t, o, p)

has all four of its values already given, and does not depend on our optimization variable b in any
way.

(ii) [Optional] Which expressions would we use to predict the label for Y with our Bayes Net above?
Assume we are given all features except B. So A = a, S = s, T = t, etc. For the below choices, the
underscore means we are dropping the value of that variable. So y, __ = (0, 1) would mean y = 0.

1

□ y, __ = argmax
y,b

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (s)P (t)P (o)P (p)P (a)P (b|s, t, o, p)P (c)P (d)P (y|a, b, c, d)

□ First compute b′ = argmax
b

of the formula chosen in part (ii).

Then compute y = argmax
y

P (y)P (a|y)P (b′|y)P (c|y)P (d|y)

□ First compute b′ = argmax
b

of the formula chosen in part (ii).

Then compute y = argmax
y

P (y|a, b′, c, d)

■ y = argmax
y

∑
b′

P (y)P (a|y)P (b′|y)P (c|y)P (d|y)P (s|b′)P (t|b′)P (o|b′)P (p|b′)

None
Sum out possibilities for b given the features S, T,O, P

(iii) [Optional] One day MesutBot got allergic from eating too many cashews. The incident broke his
letter S detector, so that he no longer gets reliable S features. Now what expressions would we use
to predict the label for Y ? Assume all features except B,S are given. So A = a, T = t, O = o, etc.

□ y = argmax
y

P (y)P (a|y)P (c|y)P (d|y)

□ y, __, __ = argmax
y,b,s

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,s

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (y)P (a|y)P (b|y)P (c|y)P (d|y)P (s|b)P (t|b)P (o|b)P (p|b)

□ y, __ = argmax
y,b

P (y|a, b, c, d)

■ y = argmax
y

P (y)P (a|y)P (c|y)P (d|y)
∑
b′,s′

P (b′|y)P (s′|b′)P (t|b′)P (o|b′)P (p|b′)

None

Use variable elimination on s and b (because b cannot be accurately calculated without s).

(b) You decide to try to output a probability P (Y |features) of a stop sign being in the picture instead of a

discrete ±1 prediction. We denote this probability as P (Y |f⃗(x)). Which of the following functions return

a valid probability distribution for P (Y = y|f⃗(x))? Recall that y ∈ {−1, 1}.
■ ey·w⃗T f⃗(x)

e−y·w⃗T f⃗(x)+ey·w⃗T f⃗(x)

■ 1
2

□ 0.5

1+e−w⃗T f⃗(x)

□ −1

1+ew⃗T f⃗(x)
+ 1

None

Valid probability distribution means that the probabilities over all possible values of y must sum to 1.

P (Y = y|f⃗(x)) = ey·w⃗T f⃗(x)

e−y·w⃗T f⃗(x)+ey·w⃗T f⃗(x)
works because P (Y = 1|f⃗(x)) + P (Y = −1|f⃗(x)) = 1 (it is the

softmax function).

1
2 works because we just need P (Y = 1|f⃗(x)) + P (Y = −1|f⃗(x)) = 1

2 + 1
2 = 1, so it is valid.

0.5

1+e−w⃗T f⃗(x)
and −1

1+ew⃗T f⃗(x)
+ 1 don’t depend on y so we can’t guarantee the sum of the two probabilities

adds to 1, and thus cannot guarantee that those two expressions are a valid probability distribution.

2

You note that features are inputs into a neural network and the output is a label, so you modify the Bayes Net
from above into a Neural Network computation graph. Recall the logistic function s(x) = 1

1+e−x has derivative
∂s(x)
∂x = s(x)[1− s(x)]

S

T

O

P

wS

wT

wO

wP

×

×

×

×

b1

+ E

A

ReLU

C

D

wA

B

wB

wC

wD

×

×

×

×

b2

+ X s(·)

y∗

Loss

(c) For this part, ignore the dashed edge when calculating the below.

(i) What is ∂Loss
∂wA

?

 ∂Loss
∂s(X) · [s(X) · (1− s(X))] ·A

2(s(X)− y∗) · [s(X) · (1− s(X))] ·A
∂Loss

∂s(X) · [s(X) · (1− s(X))] · 2A+ 1

∂Loss
∂s(X) · [s(X) · (1− s(X))] · 2A

2(s(X)− y∗) · [s(X) · (1− s(X))] ·A+ 1
∂Loss

∂s(X) · [s(X) · (1− s(X))] ·A+ 1

None

∂Loss

∂wA
=

∂Loss

∂s(X)
· ∂s(X)

∂X
· ∂X

∂AwA
· ∂AwA

∂wA

=
∂Loss

∂s(X)
· [s(X) · (1− s(X))] · 1 ·A

3

(ii) What is ∂Loss
∂wS

? Keep in mind we are still ignoring the dotted edge in this subpart.

 ∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S

2(s(X)− y∗) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· 2S + S

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· 2S

2(s(X)− y∗) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S + S

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S + S

None

∂Loss

∂wS
=

∂Loss

∂s(X)
· ∂s(X)

∂X
· ∂X

∂BwB
· ∂BwB

∂ReLU(E)
· ∂ReLU(E)

∂E
· ∂E

∂SwS
· ∂SwS

∂wS

=
∂Loss

∂s(X)
· [s(X) · (1− s(X))] · 1 · wB ·

({
1 E ≥ 0

0 E < 0

)
· 1 · S

(d) [Optional] MesutBot is having trouble paying attention to the S feature because sometimes it gets zeroed
out by the ReLU, so we connect it directly to the input of s(·) via the dotted edge. For the below, treat
the dotted edge as a regular edge in the neural net.

(i) Which of the following is equivalent to ∂Loss
∂wA

?

 ∂Loss
∂s(X) · [s(X) · (1− s(X))] ·A

2(s(X)− y∗) · [s(X) · (1− s(X))] ·A
∂Loss

∂s(X) · [s(X) · (1− s(X))] · 2A+A

∂Loss
∂s(X) · [s(X) · (1− s(X))] · 2A

2(s(X)− y∗) · [s(X) · (1− s(X))] ·A+A
∂Loss

∂s(X) · [s(X) · (1− s(X))] ·A+A

None
This doesn’t change because the added edge is further upstream from wA and doesn’t affect gradient
flows between wA and Loss. From above, we copy:

∂Loss

∂wA
=

∂Loss

∂s(X)
· ∂s(X)

∂X
· ∂X

∂AwA
· ∂AwA

∂A

=
∂Loss

∂s(X)
· [s(X) · (1− s(X))] · 1 · wA

(ii) Which of the following is equivalent to ∂Loss
∂wS

? Keep in mind we are still treating the dotted edge as
a regular edge.

4

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S

2(s(X)− y∗) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· 2S + S

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· 2S

2(s(X)− y∗) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S + S

∂Loss
∂s(X) · [s(X) · (1− s(X))] · wB ·

({
1 E ≥ 0

0 E < 0

)
· S + S

 None

Due to the new dotted edge, there are now two paths along the neural network that lead from output
to wS .

∂Loss

∂wS
=

∂Loss

∂s(X)
· ∂s(X)

∂X
·
(

∂X

∂BwB
· ∂BwB

∂ReLU(E)
· ∂ReLU(E)

∂E
· ∂E

∂SwS
+

∂X

∂SwS

)
· ∂SwS

∂wS

=
∂Loss

∂s(X)
· [s(X) · (1− s(X))] ·

(
1 · wB ·

({
1 E ≥ 0

0 E < 0

)
· 1 + 1

)
· S

=
∂Loss

∂s(X)
· [s(X) · (1− s(X))] ·

({
wB + 1 E ≥ 0

1 E < 0

)
· S

5

Q2. Kernel Perceptron
Remember that the perceptron update rule looks like:

w ← w + yx

for input feature vectors x and class labels y ∈ {−1, 1}. If wx = 0, we predict positive label.

(a) Suppose w = [1, 1] initially, and we observe the following training examples:

x0 x1 y
1 2 -1
3 1 1
1 1 -1
1 0 1

What is the final value of w? [1, -3]

(b) Notice that because of the update rule, the final weight vector w∗ is just a linear combination of training
examples and the initializer. Suppose we iterate over the training set following the order in the table until
all the training samples are classified correctly, fill in the coefficients below:

w =

[
1
1

]
+ -2 ·

[
1
2

]
+ 1 ·

[
3
1

]
+ -1 ·

[
1
1

]
+ 0 ·

[
1
0

]
This means that instead of explicitly representing w as a vector of feature weights, we can implicitly represent
the decision rule with a vector v with one weight per example.

(c) Now suppose x and w are D-dimensional, and we have N training examples. How many numbers do I
need to represent w explicitly?

D because w is D-dimensional.

(d) How many numbers do I need to represent w implicitly? (Assume that the initial value for w is public
information so you do not need to consume any memory to store it.)

N because we need one coefficient for each training sample.

(e) Write the update rule for the implicit representation if you pick the ith training sample (use ei to represent
a vector whose ith position is 1 and all the other positions are 0s):

v ← v + yei

(f) Write the prediction rule for the implicit representation if the initial w is a zero vector. You can use vi to
represent the ith value from v and xi to represent the ith training sample:

pred(x) =
∑
i

vi⟨xi, x⟩

(g) When is it more space-efficient to use the implicit representation? (Your answer should be at most three
words/symbols, and be expressed in terms of D and N .)

N < D

(h) Now suppose x is two-dimensional, and we introduce a feature transformation

f(x) = [x2
0, x

2
1,
√
2x0,
√
2x1,
√
2x0x1, 1]

6

It is not too hard to show that for any vectors a and b,

f(a) · f(b) = (a · b+ 1)2

How can we take advantage of this fact when working with the implicit representation? (Your answer
should be 1 sentence.)

We can replace the old features with the transformed features to classify non-linearly separable training
set.

7

