
CS 188
Summer 2022 Final Review Utility / RL

Q1. Value of Perfect Information
Consider the setup shown in the figure below, involving a robotic plant-watering system with some mysterious
random forces involved. Here, there are 4 main items at play.
(1) The robot (R) can choose to move either left (l) or right (r). Its chosen action pushes a water pellet into
the corresponding opening.
(2) The random switch (S) is arbitrarily in one of two possible positions {s0, s1}. When in position (s0), it
accepts a water pellet only from the (l) tube. When in position (s1), it accepts a water pellet only from the (r)
tube.
(3) A controllable three-way switch (T ) can be chosen to be placed in one of three possible positions {t0, t1, t2}.
(4) A plant (P ) is arbitrarily located in one of three possible locations {p0, p1, p2}. When in position pi, it can
only be successfully watered if the corresponding tube ti has been selected and if the water pellet was sent in
a direction that was indeed accepted by the first switch (S).

Finally, in this problem, utility (U) is 1 when the plant successfully receives the water pellet, and 0 other-
wise.

(a) Let’s first set this problem up as a decision network.

(i) Which of the following decision networks correctly describe the problem described above? Select all
that apply. Recall the conventions from the lecture notes:

action nodes as rectangles , chance nodes as ovals , and utility nodes as diamonds

.
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(ii) Fill in the following probability tables, given that there is an equal chance of being at each of their
possible locations.

S P (S)
P P (P )

(b) Before selecting your actions, suppose that someone could tell you the value of either S or P . Follow the
steps below to calculate the maximum expected utility (MEU) when knowing S, or when knowing
P . Then, decide which one you would prefer to be told.

(i) What is MEU(S)?
# 0 # 1

9 # 1
6 # 1

4 # 1
3 # 1

2
# 2

3 # 3
4 # 5

6 # 1 # None of the above

(ii) What is MEU(P )?
# 0 # 1

9 # 1
6 # 1

4 # 1
3 # 1

2
# 2

3 # 3
4 # 5

6 # 1 # None of the above

(iii) Would you prefer to be told S or P? # S # P

(c) (i) What is MEU(S, P )?
# 0 # 1

9 # 1
6 # 1

4 # 1
3 # 1

2
# 2

3 # 3
4 # 5

6 # 1 # None of the above

(ii) In this problem, does V PI(S, P ) = V PI(S) + V PI(P )? # Yes # No

(iii) In general, does V PI(a, b) = V PI(a) + V PI(b)? Select all of the statements below which are true.
# Yes, because of the additive property.
# Yes, because the order in which we observe the variables does not matter.
# Yes, but the reason is not listed.
# No, because the value of knowing each variable can be dependent on whether or not we know
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the other one.
# No, because the order in which we observe the variables matters.
# No, but the reason is not listed.

(d) For each of the following new variables introduced to this problem, what would the corresponding VPI of
that variable be?

(i) A new variable X indicates the weather outside, which affects the overall health of the plant.
# VPI(X)< 0 # VPI(X)= 0 # VPI(X)> 0

(ii) A new variable X indicates the weather outside, which affects the metal of switch S such that when
it’s hot outside, the switch is most likely to remain in position s0 with probability 0.9 (and goes to
s1 with probability 0.1).
# VPI(X)< 0 # VPI(X)= 0 # VPI(X)> 0
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Q2. Policy Evaluation
In this question, you will be working in an MDP with states S, actions A, discount factor γ, transition function
T , and reward function R.

We have some fixed policy π : S → A, which returns an action a = π(s) for each state s ∈ S. We want to
learn the Q function Qπ(s, a) for this policy: the expected discounted reward from taking action a in state s
and then continuing to act according to π: Qπ(s, a) =

∑
s′ T (s, a, s

′)[R(s, a, s′) + γQπ(s′, π(s′)]. The policy π
will not change while running any of the algorithms below.

(a) Can we guarantee anything about how the values Qπ compare to the values Q∗ for an optimal policy π∗?

# Qπ(s, a) ≤ Q∗(s, a) for all s, a

# Qπ(s, a) = Q∗(s, a) for all s, a

# Qπ(s, a) ≥ Q∗(s, a) for all s, a

# None of the above are guaranteed

(b) Suppose T andR are unknown. You will develop sample-based methods to estimateQπ. You obtain a series
of samples (s1, a1, r1), (s2, a2, r2), . . . (sT , aT , rT ) from acting according to this policy (where at = π(st),
for all t).

(i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in
sequence:

V (st)← (1− α)V (st) + α(rt + γV (st+1))

which approximates the expected discounted reward V π(s) for following policy π from each state s,
for a learning rate α.

Fill in the blank below to create a similar update equation which will approximate Qπ using the
samples.

You can use any of the terms Q, st, st+1, at, at+1, rt, rt+1, γ, α, π in your equation, as well as
∑

and
max with any index variables (i.e. you could write maxa, or

∑
a and then use a somewhere else),

but no other terms.

Q(st, at)← (1− α)Q(st, at) + α [ ]

(ii) Now, we will approximate Qπ using a linear function: Q(s, a) = w⊤f(s, a) for a weight vector w and
feature function f(s, a).

To decouple this part from the previous part, use Qsamp for the value in the blank in part (i) (i.e.
Q(st, at)← (1− α)Q(st, at) + αQsamp).

Which of the following is the correct sample-based update for w?

# w← w + α[Q(st, at)−Qsamp]

# w← w − α[Q(st, at)−Qsamp]

# w← w + α[Q(st, at)−Qsamp]f(st, at)

# w← w − α[Q(st, at)−Qsamp]f(st, at)

# w← w + α[Q(st, at)−Qsamp]w

# w← w − α[Q(st, at)−Qsamp]w

(iii) The algorithms in the previous parts (part i and ii) are:

□ model-based □ model-free
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