1 Independent Probability Tables

Suppose you have two random variables, C and N. C is the result of flipping a biased coin that lands on heads with probability 0.8. N is the number of heads that result from flipping a fair coin twice. Fill in the probability tables for P(C), P(N), and P(C,N).

C	P(C)
h	
t	

N	P(N)
0	
1	
2	

C	N	P(C,N)
h	0	
h	1	
h	2	
t	0	
t	1	
t	2	

Note that in general, tables cannot be combined in this way. This works because of our simplifying assumption that the coin flips are independent.

2 Joining Probability Tables and Bayes's Rule

Consider two binary random variables, L and T. L takes on values +l and l, corresponding to whether or not youre late for work. T takes on values +t and t and corresponds to whether or not theres a traffic jam. For example, +l, +t means youre late for work and theres a traffic jam. We are given the following probability tables:

T	P(T)
+t	0.4
-t	0.6

L	T	P(L T)
+l	+t	0.8
+l	-t	0.25
-l	+t	0.2
-l	-t	0.75

Use the above tables to fill in the following tables:

L	T	P(L,T)
+l	+t	
+l	-t	
-l	+t	
-l	-t	

L	Т	P(T L)
+1	+t	
+1	-t	
-l	+t	
-l	-t	

3 Querying a Joint Distribution

A	В	С	P(A,B,C)
+a	+b	+c	1/16
+a	+b	-с	1/8
+a	-b	+c	1/16
+a	-b	-с	1/4
–a	+b	+c	1/4
–a	+b	-с	1/16
-a	-b	+c	1/16
–a	-b	-с	1/8

Compute the following values:

(a)
$$P(+c) =$$

(d)
$$P(+c|-a,+b) =$$

(b)
$$P(-b, +a) =$$

(c)
$$P(-b|+a) =$$

(e)
$$P(-a,+c|-b) =$$

Compute the following tables:

(a)
$$P(B)$$

(b)
$$P(+b|+a,C)$$

(c)
$$P(A,C|+b)$$