CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

Bayes Net Semantics

- A Bayes net is an efficient encoding of a probabilistic model of a domain
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Size of a Bayes Net

- How big is a joint distribution over N Boolean variables?

2^{N}

- How big is an N -node net if nodes have up to k parents?
$\mathrm{O}\left(\mathrm{N}^{*} 2^{\mathrm{k}+1}\right)$
- Both give you the power to calculate

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)
$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (this lecture!)

Causality?

- BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables Traffic and Rain

Example: Traffic

- Causal direction

$P(T, R)$
+r
+t $3 / 16$ $+r$ -t $1 / 16$ $-r$ +t $6 / 16$ $-r$ -t $6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$

$+r$	+t	$3 / 16$
+r	-t	$1 / 16$
-r	+t	$6 / 16$
-r	-t	$6 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to estimate probabilities from data
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Inference by Enumeration in Bayes Net

- Reminder of inference by enumeration:
- Any probability of interest can be computed by summing entries from the joint distribution: $\mathrm{P}(\boldsymbol{Q} \mid \boldsymbol{e})=\alpha \sum_{h} \mathrm{P}(\boldsymbol{Q}, \boldsymbol{h}, \boldsymbol{e})$
- Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities
- $P(B \mid j, m)=\alpha \sum_{e, a} P(B, e, a, j, m)$
- $\quad=\alpha \sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$
- Problem: sums of exponentially many products!

Variable elimination: The basic ideas

- Move summations inwards as far as possible
- $P(B \mid j, m)=\alpha \sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$

$$
=\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)
$$

- Do the calculation from the inside out
- I.e., sum over a first, then sum over e

- Challenge: $P(a \mid B, e)$ isn't a single number, it's a table of different numbers (depending on the values of B and e)
- Solution: use arrays of numbers with appropriate operations on them; these are called factors

Factor Zoo I

- Joint distribution: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- Entries $P(x, y)$ for all x, y
- $|X| x|Y|$ matrix
- Sums to 1

Number of variables (capitals) = dimensionality of the table

Factor Zoo II

- Single conditional: $P(Y \mid x)$
- Entries P(y|x) for fixed x, all y
- Sums to 1

$P(J \mid a)$

$\mathrm{A} \backslash \mathrm{J}$	true	false
true	0.9	0.1

- Family of conditionals: $P(X \mid Y)$
- Multiple conditionals
- Entries $P(x \mid y)$ for all x, y
- Sums to $|\mathrm{Y}|$

$P(J \mid A)$
$\left.\begin{array}{|c|c|c|}\hline A \backslash J & \text { true } & \text { false } \\ \hline \text { true } & 0.9 & 0.1 \\ \hline \text { false } & 0.05 & 0.95 \\ \hline\end{array}\right\}-P(J \mid a)$

Operation 1: Pointwise product

- First basic operation: pointwise product of factors (not matrix multiply!)
- New factor has union of variables of the two original factors

- Each entry is the product of the corresponding entries from the original factors
- Example: $P(J \mid A) \times P(A)=P(A, J)$

Example: Making larger factors

- Example: $P(A, J) \times P(M \mid A)=P(A, J, M)$
- Factor blowup can make VE very expensive!

$P(A, J)$		
$\mathrm{A} \backslash J$	true	false
true	0.09	0.01
false	0.045	0.855

$P(M \mid A)$		
$\mathbf{X}$$A \backslash M$ true false true 0.7 0.3 false 0.01 0.99		

$$
P(A, J, M)
$$

$=$| | $J \backslash M$ | true | false |
| :---: | :---: | :---: | :---: |
| $J \backslash M$ | true | false | |
| true | | | 0.846 |
| false | | 0.003 | |

Operation 2: Summing out a variable

- Second basic operation: summing out (or eliminating) a variable from a factor
- Shrinks a factor to a smaller one
- Example: $\sum_{j} P(A, J)=P(A, j)+P(A, \neg j)=P(A)$

$P(A, J)$		
$A \backslash J$	true	false
true	0.09	0.01
false	0.045	0.855

Variable Elimination

Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, . ., E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H_{j}
- Eliminate (sum out) H_{j} from the product of all factors mentioning H_{j}

- Join all remaining factors and normalize

$$
\hat{\rho} \times=\square \times \alpha
$$

Example

Query $P(B \mid j, m)$

$$
\begin{array}{lllll}
\hline P(B) & P(E) & P(A \mid B, E) & P(j \mid A) & P(m \mid A) \\
\hline
\end{array}
$$

Choose A

$$
\begin{aligned}
& P(A \mid B, E) \\
& P(j \mid A) \\
& P(m \mid A)
\end{aligned} \quad \boxed{x} \quad \sum>P(j, m \mid B, E)
$$

$P(B) \quad P(E) \quad P(j, m \mid B, E)$

Example

$\begin{array}{lll}P(B) & P(E) & P(j, m \mid B, E)\end{array}$

Choose E

$$
\begin{array}{ll}
P(E) \\
P(j, m \mid B, E)
\end{array} \stackrel{\times}{\sum>} P(j, m \mid B)
$$

$P(B) \quad P(j, m \mid B)$
Finish with B

$$
\begin{array}{lll}
P(B) \\
P(j, m \mid B)
\end{array} \stackrel{x}{P} \quad P(j, m, B) \underset{\sim}{\text { Normalize }} P P(B \mid j, m)
$$

Summing out from a product of factors

- Project the factors each way first, then sum the products
- Example: $\sum_{a} P(a \mid B, e) \times P(j \mid a) \times P(m \mid a)$

$$
\begin{aligned}
= & P(a \mid B, e) \times P(j \mid a) \times P(m \mid a)+ \\
& P(\neg a \mid B, e) \times P(j \mid \neg a) \times P(m \mid \neg a)
\end{aligned}
$$

Order matters

- Order the terms Z, A, B C, D
- $P(D)=\alpha \sum_{z, a, b, c} P(z) P(a \mid z) P(b \mid z) P(c \mid z) P(D \mid z)$
- $\quad=\alpha \sum_{z} P(z) \sum_{a} P(a \mid z) \sum_{b} P(b \mid z) \sum_{c} P(c \mid z) P(D \mid z)$
- Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z
- $P(D)=\alpha \sum_{a, b, c, z} P(a \mid z) P(b \mid z) P(c \mid z) P(D \mid z) P(z)$
- $\quad=\alpha \sum_{a} \sum_{b} \sum_{c} \sum_{z} P(a \mid z) P(b \mid z) P(c \mid z) P(D \mid z) P(z)$
- Largest factor has 4 variables (A,B,C,D)
- In general, with n leaves, factor of size 2^{n}

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide's example 2^{n} vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Worst Case Complexity? Reduction from SAT

- Variables: W, X, Y, Z
- CNF clauses:

1. $C_{1}=W \vee X \vee Y$
2. $C_{2}=Y \vee Z \vee \neg W$
3. $C_{3}=X \vee Y \vee \neg Z$

- Sentence $S=C_{1} \wedge C_{2} \wedge C_{3}$
- $P(S)>0$ iff S is satisfiable - => NP-hard
- $P(S)=K \times 0.5^{n}$ where K is the number of satisfying assignments for clauses
- =>\#P-hard

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of variable elimination is linear in the network size if you eliminate from the leave towards the roots

Bayes Nets

Part I: Representation

Part II: Exact inference

- Enumeration (always exponential complexity)
- Variable elimination (worst-case exponential complexity, often better)
- Inference is NP-hard in general

Part III: Independence

Part IV: Approximate Inference

