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Bayes Net Semantics

§ A Bayes net is an efficient encoding of a probabilistic 
model of a domain

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination of 
parents’ values

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:



Size of a Bayes Net

§ How big is a joint distribution over N 
Boolean variables?

2N

§ How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

§ Both give you the power to calculate

§ BNs: Huge space savings!

§ Also easier to elicit local CPTs

§ Also faster to answer queries (this lecture!)



Causality?

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Rain
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Example: Traffic

§ Causal direction
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Example: Reverse Traffic

§ Reverse causality?
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Causality?

§ When Bayes’ nets reflect the true causal patterns:
§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to estimate probabilities from data

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Drips
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence



Inference by Enumeration in Bayes Net

§ Reminder of inference by enumeration:
§ Any probability of interest can be computed by summing 

entries from the joint distribution: P(Q | e) = a åh P(Q , h, e)
§ Entries from the joint distribution can be obtained from a BN 

by multiplying the corresponding conditional probabilities

§ P(B | j, m) =  α åe,a P(B, e, a, j, m) 
§ =  α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
§ Problem: sums of exponentially many products!
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Variable elimination: The basic ideas

§ Move summations inwards as far as possible
§ P(B | j, m) =  α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
§ =  α P(B) åe P(e) åa P(a|B,e) P(j|a) P(m|a)

§ Do the calculation from the inside out
§ I.e., sum over a first, then sum over e
§ Challenge: P(a|B,e) isn’t a single number, it’s a table of different 

numbers (depending on the values of B and e)
§ Solution: use arrays of numbers with appropriate operations on 

them; these are called factors

9



Factor Zoo I

§ Joint distribution: P(X,Y)
§ Entries P(x,y) for all x, y
§ |X|x|Y| matrix
§ Sums to 1

§ Projected joint: P(x,Y)
§ A slice of the joint distribution
§ Entries P(x,y) for one x, all y
§ |Y|-element vector
§ Sums to P(x)

A \ J true false

true 0.09 0.01

false 0.045 0.855

P(A,J)

P(a,J) = Pa(J)

Number of variables (capitals) = dimensionality of the table

A \ J true false

true 0.09 0.01



Factor Zoo II

§ Single conditional: P(Y | x)
§ Entries P(y | x) for fixed x, all y
§ Sums to 1

§ Family of conditionals: 
P(X |Y)
§ Multiple conditionals
§ Entries P(x | y) for all x, y
§ Sums to |Y|

A \ J true false

true 0.9 0.1

P(J|a)

A \ J true false

true 0.9 0.1

false 0.05 0.95

P(J|A)

} - P(J|a)
} - P(J|¬a)



Operation 1: Pointwise product

§ First basic operation: pointwise product of factors 
(not matrix multiply!)
§ New factor has union of variables of the two original factors
§ Each entry is the product of the corresponding entries from 

the original factors

§ Example: P(J|A)  x  P(A)  =  P(A,J)

P(J|A)
P(A)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x =



Example: Making larger factors

§ Example: P(A,J)  x  P(M|A)  =  P(A,J,M)
§ Factor blowup can make VE very expensive!

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855
x =

P(M | A)
A \ M true false

true 0.7 0.3

false 0.01 0.99
A=true

A=false

P(A,J,M)

J \ M true false

true

false 0.846

J \ M true false

true

false 0.003



Operation 2: Summing out a variable

§ Second basic operation: summing out (or 
eliminating) a variable from a factor
§ Shrinks a factor to a smaller one

§ Example: åj  P(A,J) = P(A,j) + P(A,¬j) = P(A) 

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J



Variable Elimination



Variable Elimination

§ Query: P(Q|E1=e1,.., Ek=ek) 

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables 
(not Q or evidence):
§ Pick a hidden variable Hj

§ Eliminate (sum out) Hj from the product of all 
factors mentioning Hj

§ Join all remaining factors and normalize
X α



Example

Choose A

P(B)     P(E)     P(A|B,E) P(j|A) P(m|A)

Query P(B | j,m) 

P(A|B,E)
P(j|A)
P(m|A)

P(j,m|B,E)

P(B)     P(E)     P(j,m|B,E)



Example

Normalize

Choose E
P(E)
P(j,m|B,E)

P(j,m|B)

P(B)     P(E)     P(j,m|B,E)

Finish with B
P(B)
P(j,m|B) P(j,m,B)

P(B)     P(j,m|B)

P(B | j,m)



Summing out from a product of factors

§ Project the factors each way first, then sum the products

§ Example: åa P(a|B,e) x P(j|a) x P(m|a)
§ = P(a|B,e) x P(j|a) x P(m|a) + 
§ P(¬a|B,e) x P(j|¬a) x P(m|¬a)



Order matters

§ Order the terms Z, A, B C, D
§ P(D) =  α åz,a,b,c P(z) P(a|z) P(b|z) P(c|z) P(D|z)
§ =  α åz P(z) åa P(a|z) åb P(b|z) åc P(c|z) P(D|z)
§ Largest factor has 2 variables (D,Z)

§ Order the terms A, B C, D, Z
§ P(D) =  α åa,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 
§ =  α åa åb åc åz P(a|z) P(b|z) P(c|z) P(D|z) P(z)
§ Largest factor has 4 variables (A,B,C,D)
§ In general, with n leaves, factor of size 2n

D

Z

A B C



VE: Computational and Space Complexity

§ The computational and space complexity of variable elimination is 
determined by the largest factor (and it’s space that kills you)

§ The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., previous slide’s example 2n vs. 2

§ Does there always exist an ordering that only results in small factors?
§ No!



Worst Case Complexity? Reduction from SAT

§ Variables: W, X, Y, Z
§ CNF clauses:

1. C1 = W v X v Y
2. C2 = Y v Z v ¬ W
3. C3 = X v Y v ¬Z

§ Sentence S = C1 Ù C2 ÙC3
§ P(S) > 0 iff S is satisfiable

§ => NP-hard
§ P(S) = K x 0.5n where K is the 

number of satisfying 
assignments for clauses
§ => #P-hard

S

C1 C2 C3

¬
¬

W X Y Z

0.5 0.50.50.5



Polytrees

§ A polytree is a directed graph with 
no undirected cycles

§ For poly-trees the complexity of 
variable elimination is linear in the 
network size if you eliminate from 
the leave towards the roots



Bayes Nets

Part I: Representation

Part II: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential 
complexity, often better)

§ Inference is NP-hard in general

Part III: Independence

Part IV: Approximate Inference


