CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

Instructors: Angela Liu and Yanlai Yang University of California, Berkeley (Slides adapted from Stuart Russell and Dawn Song)

Bayes Net Semantics

- A Bayes net is an efficient encoding of a probabilistic model of a domain
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Size of a Bayes Net

How big is a joint distribution over N Boolean variables?

2^N

 How big is an N-node net if nodes have up to k parents?
 O(N * 2^{k+1}) Both give you the power to calculate

 $P(X_1, X_2, \ldots X_n)$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (this lecture!)

Causality?

BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Rain*

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to estimate probabilities from data
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

 $P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$

Inference by Enumeration in Bayes Net

Reminder of inference by enumeration:

- Any probability of interest can be computed by summing entries from the joint distribution: $P(Q | e) = \alpha \sum_{h} P(Q, h, e)$
- Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities
- $P(B \mid j, m) = \alpha \sum_{e,a} P(B, e, a, j, m)$
 - = $\alpha \sum_{e,a} P(B) P(e) P(a|B,e) P(j|a) P(m|a)$
- Problem: sums of *exponentially many* products!

Variable elimination: The basic ideas

- Move summations inwards as far as possible
 - $P(B \mid j, m) = \alpha \sum_{e,a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$ = $\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)$
- Do the calculation from the inside out
 - I.e., sum over *a* first, then sum over *e*
 - Challenge: P(a | B,e) isn't a single number, it's a table of different numbers (depending on the values of B and e)
 - Solution: use arrays of numbers with appropriate operations on them; these are called *factors*

9

Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- X|x|Y| matrix
- Sums to 1

P(A,J)			
A \ J true false			
true	0.01		
false	0.045	0.855	

Projected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for one x, all y
- |Y|-element vector
- Sums to P(x)

$$P(a,J) = P_a(J)$$

A / J	true	false
true	0.09	0.01

Number of variables (capitals) = dimensionality of the table

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(J|a)

A / J	true	false
true	0.9	0.1

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

A / J	true	false
true	0.9	0.1
false	0.05	0.95

[.] - P(J|a) [.] - P(J|⊸a)

Operation 1: Pointwise product

- First basic operation: *pointwise product* of factors (*not* matrix multiply!)
 - New factor has *union* of variables of the two original factors
 - Each entry is the product of the corresponding entries from the original factors
- Example: $P(J|A) \times P(A) = P(A,J)$

P(A)		P(,	J A)				P(A,J)
true	0.1		A / J	true	false		A \ J	true	false
false	0.9	X	true	0.9	0.1	=	true	0.09	0.01
			false	0.05	0.95		false	0.045	0.855

Example: Making larger factors

- Example: $P(A,J) \times P(M|A) = P(A,J,M)$
- Factor blowup can make VE very expensive!

P(A,J,M)

P(A,J)				
A \ J true false				
true 0.09 0		0.01		
false 0.045 0.855				

	$P(M \mid A)$				
	A \ M	true	false		
(true	0.7	0.3		
	false	0.01	0.99		

Operation 2: Summing out a variable

- Second basic operation: *summing out* (or eliminating) a variable from a factor
 - Shrinks a factor to a smaller one
- Example: $\sum_{j} P(A,J) = P(A,j) + P(A,\neg j) = P(A)$

P(A,J)

A \ J	true	false
true	0.09	0.01
false	0.045	0.855

Variable Elimination

Variable Elimination

- Query: $P(Q | E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H_i
 - Eliminate (sum out) H_j from the product of all factors mentioning H_j
- Join all remaining factors and normalize

Example

Query P(B | j,m)

Choose A

Example

Ε

M)

В

Α

Summing out from a product of factors

- Project the factors each way first, then sum the products
- Example: $\sum_{a} P(a | B, e) \times P(j | a) \times P(m | a)$
- $= P(a | B,e) \times P(j | a) \times P(m | a) +$
 - $P(\neg a | B,e) \times P(j | \neg a) \times P(m | \neg a)$

Order matters

Α

В

- Order the terms Z, A, B C, D
 - $P(D) = \alpha \sum_{z,a,b,c} P(z) P(a | z) P(b | z) P(c | z) P(D | z)$
 - $= \alpha \sum_{z} P(z) \sum_{a} P(a | z) \sum_{b} P(b | z) \sum_{c} P(c | z) P(D | z)$
 - Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z
 - $P(D) = \alpha \sum_{a,b,c,z} P(a | z) P(b | z) P(c | z) P(D | z) P(z)$
 - $= \alpha \sum_{a} \sum_{b} \sum_{c} \sum_{z} P(a | z) P(b | z) P(c | z) P(D | z) P(z)$
 - Largest factor has 4 variables (A,B,C,D)
 - In general, with n leaves, factor of size 2ⁿ

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity? Reduction from SAT

- Variables: W, X, Y, Z
- CNF clauses:
 - $1. \quad C_1 = W \lor X \lor Y$
 - $2. \quad C_2 = Y \vee Z \vee \neg W$
 - $3. \quad C_3 = X \vee Y \vee \neg Z$
- Sentence $S = C_1 \wedge C_2 \wedge C_3$
- P(S) > 0 iff S is satisfiable
 => NP-hard
- P(S) = K x 0.5ⁿ where K is the number of satisfying assignments for clauses
 - => #P-hard

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of variable elimination is *linear in the network size* if you eliminate from the leave towards the roots

Bayes Nets

✓ Part II: Exact inference

Enumeration (always exponential complexity)

 Variable elimination (worst-case exponential) complexity, often better)

Inference is NP-hard in general

Part III: Independence

Part IV: Approximate Inference