CS 188: Artificial Intelligence

Bayes Nets: Independence

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad X \Perp Y \mid Z
$$

Conditional Independence

- X and Y are independent if

$$
\forall x, y P(x, y)=P(x) P(y) \rightarrow-\rightarrow \quad X \Perp Y
$$

- X and Y are conditionally independent given Z

$$
\forall x, y, z P(x, y \mid z)=P(x \mid z) P(y \mid z) \cdots X \Perp Y \mid Z
$$

- (Conditional) independence is a property of a distribution
- Example: Alarm \Perp Fire \mid Smoke

Bayes Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Beyond above "chain rule \rightarrow Bayes net" conditional independence assumptions
- Often additional conditional independences
- They can be read off the graph
- Important for modeling: understand assumptions made
 when choosing a Bayes net graph

Example

- Conditional independence assumptions directly from simplifications in chain rule:

$$
\begin{aligned}
& \mathbb{P}(x, \mid y\{z, u Y)\} \neq P(x) P(y \mid x) P(z \mid y) P(w \mid z)
\end{aligned}
$$

- Additional implied conditional independence assumptions?

$$
W \Perp X \mid Y
$$

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
- Why triples?
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Guaranteed X independent of Z ?
- No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
- In numbers:

$$
\begin{aligned}
& P(+y \mid+x)=1, P(-y \mid-x)=1 \\
& P(+z \mid+y)=1, P(-z \mid-y)=1
\end{aligned}
$$

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Guaranteed X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y)
\end{aligned}
$$

Yes!

- Evidence along the chain "blocks" the influence

Common Causes

- This configuration is a "common cause"

- Guaranteed X independent of Z ?
- No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Project due causes both forums busy and lab full
- In numbers:

$$
\begin{aligned}
& P(+x \mid+y)=1, P(-x \mid-y)=1 \\
& P(+z \mid+y)=1, P(-z \mid-y)=1
\end{aligned}
$$

Common Cause

- This configuration is a "common cause"

$$
P(x, y, z)=P(y) P(x \mid y) P(z \mid y)
$$

- Guaranteed X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \\
& \text { Yes! }
\end{aligned}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
X : Raining $\quad Y$: Ballgame

Z: Traffic

- Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Proof:

$$
P(x, y)=\sum P(x, y, z)
$$

Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- (Proved previously)
- Are X and Y independent given Z ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
- Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN , are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables $\{Z\}$?
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain A-> $B->C$ where B is unobserved (either direction)
- Common cause $A<-B->C$ where B is unobserved
- Common effect (aka v-structure) $A->B<-C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

D-Separation

- Query: $\quad X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$?
- Check all (undirected!) paths between X_{i} and X_{j}
- If one or more active, then independence not guaranteed (but can still be independent)
- Otherwise (i.e. if all paths are inactive), then independence is guaranteed $X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$

Example

Example

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:

$$
\begin{aligned}
& T \Perp D \\
& T \Perp D \mid R \quad \text { Yes } \\
& T \Perp D \mid R, S
\end{aligned}
$$

Active Triples

Inactive Triples

Special Cases

- Every variable, given its parents, is conditionally independent of its non-descendants
- Every variable, given its Markov Blanket, is conditionally independent of everything else

Structure Implications

- Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded

- The graph structure guarantees certain
(conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

```
{X\PerpY,X\PerpZ,Y # Z,
X\PerpZ|Y,X\PerpY|Z,Y\PerpZ|X}
(X) Z
\(\{X \Perp Y, X \Perp Z, Y \Perp Z\),
\(X \Perp Z|Y, X \Perp Y| Z, Y \Perp Z \mid X\}\)
```


Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions (by making use of conditional independences!)
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes net's joint distribution may have further (conditional) independence that is not detectable by only the topology until you inspect its specific distribution

Bayes Nets

Representation
Probabilistic Inference
Conditional Independences

- Sampling
- Learning from data

