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Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:



Conditional Independence

§ X and Y are independent if

§ X and Y are conditionally independent given Z

§ (Conditional) independence is a property of a distribution

§ Example: 



Bayes Net Semantics

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents’ values

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Bayes Nets: Assumptions

§ Assumptions we are required to make to define the 
Bayes net when given the graph:

§ Beyond above “chain rule à Bayes net” conditional 
independence assumptions 

§ Often additional conditional independences

§ They can be read off the graph

§ Important for modeling: understand assumptions made 
when choosing a Bayes net graph

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))



Example

§ Conditional independence assumptions directly from simplifications in chain rule:

§ Additional implied conditional independence assumptions?

X Y Z W

P (x, y, z, w) = P (x)P (y|x)P (z|y)P (w|z)
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P (x, y, z, w) = P (x)P (y|x)P (z|x, y)P (w|x, y, z)
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X ?? Z|Y
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Independence in a BN

§ Important question about a BN:
§ Are two nodes independent given certain evidence?
§ If yes, can prove using algebra (tedious in general)
§ If no, can prove with a counter example
§ Example:

§ Question: are X and Z necessarily independent?
§ Answer: no.  Example: low pressure causes rain, which causes traffic.
§ X can influence Z, Z can influence X (via Y)
§ Addendum: they could be independent: how?

X Y Z



D-separation: Outline



D-separation: Outline

§ Study independence properties for triples
§ Why triples?

§ Analyze complex cases in terms of member triples

§ D-separation: a condition / algorithm for answering such 
queries



Causal Chains

§ This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

§ Guaranteed X independent of Z ?  
§ No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

§ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

§ This configuration is a “causal chain” § Guaranteed X independent of Z given Y?

§ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Causes

§ This configuration is a “common cause” § Guaranteed X independent of Z ?  
§ No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Project due causes both forums busy 
and lab full 

§ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Cause

§ This configuration is a “common cause” § Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Effect

§ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ Proof:
X: Raining Y: Ballgame

P (x, y) =
X

z

P (x, y, z)

=
X

z

P (x)P (y)P (z|x, y)

= P (x)P (y)
X

z

P (z|x, y)

= P (x)P (y)
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Common Effect

§ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ (Proved previously)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame



The General Case



The General Case

§ General question: in a given BN, are two variables independent 
(given evidence)?

§ Solution: analyze the graph

§ Any complex example can be broken
into repetitions of the three canonical cases



Active / Inactive Paths

§ Question: Are X and Y conditionally independent given 
evidence variables {Z}?
§ Yes, if X and Y “d-separated” by Z
§ Consider all (undirected) paths from X to Y
§ No active paths = independence!

§ A path is active if each triple is active:
§ Causal chain A ->  B -> C where B is unobserved (either direction)
§ Common cause A <- B -> C where B is unobserved
§ Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

§ All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



§ Query:

§ Check all (undirected!) paths between        and 
§ If one or more active, then independence not guaranteed 

(but can still be independent)

§ Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn} ?

Xi �� Xj |{Xk1 , ..., Xkn}



Example

Yes R

T

B

T’

Active Triples Inactive Triples



Example

R

T

B

D

L

T’

Yes

Yes

Yes

Active Triples Inactive Triples



Example

§ Variables:
§ R: Raining
§ T: Traffic
§ D: Roof drips
§ S: I’m sad

§ Questions:

T

S

D

R

Yes

Active Triples Inactive Triples



Special Cases

§ Every variable, given its parents, is conditionally independent of its non-descendants
§ Every variable, given its Markov Blanket, is conditionally independent of everything else

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j



Structure Implications

§ Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

§ This list determines the set of probability 
distributions that can be represented 

Xi �� Xj |{Xk1 , ..., Xkn}



X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology Limits Distributions

§ Given some graph topology 
G, only certain joint 
distributions can be 
encoded

§ The graph structure 
guarantees certain 
(conditional) independences

§ (There might be more 
independence)

§ Adding arcs increases the 
set of distributions, but has 
several costs

§ Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}



Bayes Nets Representation Summary

§ Bayes nets compactly encode joint distributions (by making 
use of conditional independences!) 

§ Guaranteed independencies of distributions can be deduced 
from BN graph structure

§ D-separation gives precise conditional independence 
guarantees from graph alone

§ A Bayes net’s joint distribution may have further 
(conditional) independence that is not detectable by only the 
topology until you inspect its specific distribution



Bayes Nets

§ Representation

§ Probabilistic Inference
§ Conditional Independences

§ Sampling 
§ Learning from data


