CS 188: Artificial Intelligence

Bayes Nets: Independence

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Probability Recap

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)

• Chain rule
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$

 $= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \qquad X \perp Y|Z$$

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) \ \neg \neg \neg \Rightarrow \ X \bot \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \dashrightarrow \to X \bot Y|Z$$

- Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke$

Bayes Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

$$(x) \rightarrow (y) \rightarrow (z) \rightarrow (w)$$

- Conditional independence assumptions directly from simplifications in chain rule: $R(x \downarrow y \not z \not z \not y w) = P(x)P(y|x)P(z|x,y)P(w|x,y,z)$ $R(x \downarrow y \not z \not y \not z \not z \not y) \not = ZP(x)P(y|x)P(z|y)P(w|z)$
- Additional implied conditional independence assumptions?

 $W \perp \!\!\!\perp X | Y$

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
 - Why triples?
- Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such queries

Causal Chains

This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z ? *No!*
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

P(+y | +x) = 1, P(-y | - x) = 1, P(+z | +y) = 1, P(-z | -y) = 1

Causal Chains

This configuration is a "causal chain"

P(x, y, z) = P(x)P(y|x)P(z|y)

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$

Yes!

Evidence along the chain "blocks" the influence

Common Causes

This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z ?
- No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

Common Cause

This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

 $=\frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$

$$= P(z|y)$$

Yes!

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated

Proof:

$$P(x,y) = \sum P(x,y,z)$$

Common Effect

 Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - (Proved previously)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

D-Separation

• Query:
$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$
?

- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed (but can still be independent)
 - Otherwise (i.e. if all paths are inactive), then independence is guaranteed $X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

 $T \bot D$ $T \bot D | R$ Yes $T \bot D | R, S$

Special Cases

- Every variable, given its parents, is conditionally independent of its non-descendants
- Every variable, given its *Markov Blanket*, is conditionally independent of everything else

Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\!\perp X_j | \{ X_{k_1}, ..., X_{k_n} \}$$

This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be
 encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions (by making use of conditional independences!)
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes net's joint distribution may have further (conditional) independence that is not detectable by only the topology until you inspect its specific distribution

Bayes Nets

- Representation
 Probabilistic Inference
 Conditional Independences
 Sampling
 - Learning from data