CS 188: Artificial Intelligence

Bayes Nets: Independence

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)
Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if:**
 \[\forall x, y : P(x, y) = P(x)P(y) \]

- **X and Y are conditionally independent given Z if and only if:**
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \quad X \perp Y | Z \]
Conditional Independence

- X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \rightarrow \quad X \perp Y \]

- X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y | z) = P(x | z)P(y | z) \quad \rightarrow \quad X \perp Y | Z \]

- (Conditional) independence is a property of a distribution

- Example: \(Alarm \perp Fire | Smoke \)
Bayes Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

\[P(x_i|x_1 \cdots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

- Beyond above “chain rule → Bayes net” conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph

WARNING: This Bayes Net contains Independence Assumptions!
Example

Conditional independence assumptions directly from simplifications in chain rule:

\[K(x \parallel y|Z \parallel Y|w) = P(x)P(y|x)P(z|x, y)P(w|x, y, z) \]

\[P(x \parallel y, \{X,Y\} \parallel Z) = P(x)P(y|x)P(z|y)P(w|z) \]

Additional implied conditional independence assumptions?

\[W \perp X|Y \]
Independence in a BN

- **Important question about a BN:**
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

 ![Diagram](X→Y→Z)

 - Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they *could* be independent: how?
D-separation: Outline
D-separation: Outline

- Study independence properties for triples
 - Why triples?

- Analyze complex cases in terms of member triples

- D-separation: a condition / algorithm for answering such queries
This configuration is a “causal chain”

Guaranteed X independent of Z?

No!

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

In numbers:

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

$$P(+z | +y) = 1, P(-z | -y) = 1$$
Causal Chains

- This configuration is a "causal chain"

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]

- Guaranteed X independent of Z given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y)
\]

Yes!

- Evidence along the chain "blocks" the influence
Common Causes

- This configuration is a “common cause”

- Guaranteed X independent of Z?
 - No!

 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:
 \[P(x, y, z) = P(y)P(x|y)P(z|y) \]

 \[
 \begin{align*}
 P(+x | +y) &= 1, \ P(-x | -y) = 1, \\
 P(+z | +y) &= 1, \ P(-z | -y) = 1
 \end{align*}
 \]
Common Cause

- **This configuration is a “common cause”**

 \[P(x, y, z) = P(y)P(x|y)P(z|y) \]

- **Guaranteed X and Z independent given Y?**

 \[
 P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y)
 \]

 Yes!

- **Observing the cause blocks influence between effects.**
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated

- Proof:
 \[P(x, y) = \sum P(x, y, z) \]
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - (Proved previously)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
The General Case
The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases
Active / Inactive Paths

Question: Are X and Y conditionally independent given evidence variables \(\{Z\} \)?
- Yes, if X and Y “\(d \)-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:
- Causal chain A -> B -> C where B is unobserved (either direction)
- Common cause A <-> B -> C where B is unobserved
- Common effect (aka v-structure)
 - A -> B <-> C where B or one of its descendants is observed

All it takes to block a path is a single inactive segment
Query: $X_i \perp \! \! \! \! \! \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$

Check all (undirected!) paths between X_i and X_j

- If one or more active, then independence not guaranteed (but can still be independent)
- Otherwise (i.e. if all paths are inactive), then independence is guaranteed

 $X_i \perp \! \! \! \! \! \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$
Example

$R \perp B$

$R \perp B | T$

$R \perp B | T'$

Yes

Active Triples

Inactive Triples
Example

\[L \perp T' | T \quad \text{Yes} \]
\[L \perp B \quad \text{Yes} \]
\[L \perp B | T \]
\[L \perp B | T' \]
\[L \perp B | T, R \quad \text{Yes} \]
Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- Questions:
 \[
 T \perp D \\
 T \perp D | R \quad \text{Yes} \\
 T \perp D | R, S
 \]
Special Cases

- Every variable, given its parents, is conditionally independent of its non-descendants.
- Every variable, given its Markov Blanket, is conditionally independent of everything else.

\[
\begin{align*}
&U_1 & \cdots & U_m \\
&Z_{1j} & X & Z_{nj} \\
&Y_1 & \cdots & Y_n
\end{align*}
\]
Structure Implications

- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp\!\!\!\!\!\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence.)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions (by making use of conditional independences!)

- Guaranteed independencies of distributions can be deduced from BN graph structure

- D-separation gives precise conditional independence guarantees from graph alone

- A Bayes net’s joint distribution may have further (conditional) independence that is not detectable by only the topology until you inspect its specific distribution
Bayes Nets

- Representation
- Probabilistic Inference
- Conditional Independences
 - Sampling
 - Learning from data