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Sampling

§ Basic idea
§ Draw N samples from a sampling distribution S

§ Compute an approximate posterior probability

§ Show this converges to the true probability P

§ Why sample?
§ Often very fast to get a decent 

approximate answer

§ The algorithms are very simple and 
general (easy to apply to fancy models)

§ They require very little memory (O(n))
§ They can be applied to large models, 

whereas exact algorithms blow up



Sampling basics: discrete (categorical) distribution

§ To simulate a biased d-sided coin:

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ E.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution by 
associating each outcome x with a 
P(x)-sized sub-interval of [0,1)

§ Example

§ If random() returns u = 0.83, 
then the sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

0.0 £ u < 0.6, ® C=red
0.6 £ u < 0.7, ® C=green
0.7 £ u < 1.0, ® C=blue

0.6 0.30.1



Sampling in Bayes Nets

§ Prior Sampling

§ Rejection Sampling

§ Likelihood Weighting

§ Gibbs Sampling



Prior Sampling



s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

c 0.5
¬c 0.5

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

Samples:

c, ¬s,    r, w
¬c,    s, ¬r, w

…

P(W | S,R)

P(S | C) P(R | C)

P(C)



Prior Sampling

§ For i=1, 2, …, n (in topological order)

§ Sample Xi from P(Xi | parents(Xi))

§ Return (x1, x2, …, xn)



Prior Sampling

§ This process generates samples with probability:
SPS(x1,…,xn) = 

…i.e. the BN’s joint probability

§ Let the number of samples of an event be NPS(x1,…,xn)
§ Estimate from N samples is QN(x1,…,xn) = NPS(x1,…,xn)/N
§ Then limN®¥ QN(x1,…,xn)  =  limN®¥ NPS(x1,…,xn)/N

= SPS(x1,…,xn) 
= P(x1,…,xn) 

§ I.e., the sampling procedure is consistent

Õi P(xi | parents(Xi)) = P(x1,…,xn) 



Example

§ We’ll get a bunch of samples from the BN:
c, ¬s,    r,    w
c,    s,    r,    w

¬c,    s,    r, ¬w
c, ¬s,    r,    w

¬c, ¬s, ¬r,    w

§ If we want to know P(W)
§ We have counts <w:4, ¬w:1>
§ Normalize to get P(W) = <w:0.8, ¬w:0.2>
§ This will get closer to the true distribution with more samples 
§ Can estimate anything else, too

§ P(C | ¬ w)?

S R

W

C



Rejection Sampling



c, ¬s,    r,    w
c,    s, ¬r

¬c,    s,    r, ¬w
c, ¬s, ¬r

¬c, ¬s,    r,    w

Rejection Sampling

§ A simple application of prior sampling for 
estimating conditional probabilities
§ Let’s say we want P(C| r, w) = α P(C, r, w)
§ For these counts, samples with ¬r or ¬w are not 

relevant
§ So count the C outcomes for samples with r, w

and reject all other samples 

§ This is called rejection sampling
§ It is also consistent for conditional probabilities 

(i.e., correct in the limit)

S R

W

C



Rejection Sampling
§ Input: evidence e1,..,ek
§ For i=1, 2, …, n

§ Sample Xi from P(Xi | parents(Xi))

§ If xi not consistent with evidence
§ Reject: Return, and no sample is generated in this cycle

§ Return (x1, x2, …, xn)



Likelihood Weighting



§ Idea: fix evidence variables, sample the rest
§ Problem: sample distribution not consistent!
§ Solution: weight each sample by probability of 

evidence variables given parents

Likelihood Weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P(Shape|Color=blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

c 0.5
¬c 0.5

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Want to estimate P (C | s, w)

Samples:

, s,   , w

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

w = 1.0 x 0.1 x 0.99c r



Likelihood Weighting
§ Input: evidence e1,..,ek
§ w = 1.0
§ for i=1, 2, …, n

§ if Xi is an evidence variable
§ xi = observed valuei for Xi

§ Set w = w * P(xi | parents(Xi))

§ else
§ Sample xi from P(Xi | parents(Xi))

§ return (x1, x2, …, xn), w



Likelihood Weighting
§ Sampling distribution if Z sampled and e fixed evidence

SWS(z,e) = Õj P(zj | parents(Zj)) 

§ Now, samples have weights

w(z,e) = Õk P(ek | parents(Ek)) 

§ Together, weighted sampling distribution is consistent

SWS(z,e) × w(z,e) =  Õj P(zj | parents(Zj)) Õk P(ek | parents(Ek))
= P(z,e) 

§ Likelihood weighting is an example of importance sampling
§ Would like to estimate some quantity based on samples from P
§ P is hard to sample from, so use Q instead
§ Weight each sample x by P(x)/Q(x)

Cloudy

R

C

S

W



Likelihood Weighting

§ Likelihood weighting is good
§ All samples are used
§ The values of downstream variables are 

influenced by upstream evidence

§ Likelihood weighting still has weaknesses
§ The values of upstream variables are unaffected by 

downstream evidence
§ E.g., suppose evidence is a video of a traffic accident

§ With evidence in k leaf nodes, weights will be O(2-k)
§ With high probability, one lucky sample will have much 

larger weight than the others, dominating the result

§ We would like each variable to “see” all the 
evidence!



Gibbs Sampling



§ Step 2: Initialize other variables 
§ Randomly

Gibbs Sampling Example: P( S | r)

§ Step 1: Fix evidence
§ R = true

§ Step 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P(X | all other variables)

S r

W

C

S r

W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

Sample from P(S | c, r, ¬w) Sample from P(C | s, r) Sample from P(W | s, r)



Resampling of One Variable

§ Sample from P(S | +c, +r, -w)

§ Many things cancel out – only CPTs with S remain!
§ More generally: only CPTs that have resampled variable need to be considered, and joined 

together

S +r

W

C



§ Repeat many times
§ Sample a non-evidence variable  Xi from
P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

=   α P(Xi | parents (Xi))  Õj P(yj | parents(Yj))
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Resampling of One Variable



Gibbs Sampling

Want to estimate P (C | s, w)

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

c 0.5
¬c 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

Samples:

c, s, r, w

(Arbitrarily) Pick R to resample

P (R | c, s, w) =   α  P(R | c) P (w | s,R) 

c, s, r, w

(Arbitrarily) Pick C to resample

P (C | r, s, w) =   α  P(C) P(s | C) P (r | C) 

¬ c, s, r, w



Why would anyone do this?

Both upstream and downstream 
variables condition on evidence!

In contrast: likelihood weighting only 
conditions on upstream evidence, 
and hence weights obtained in 
likelihood weighting can sometimes 
be very small.
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More details on Gibbs sampling

§ Gibbs sampling belongs to a family of sampling methods called 
Markov chain Monte Carlo (MCMC)

§ Theorem: In the limit of repeating this infinitely many times, the 
resulting samples come from the correct distribution.*

*: Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair
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Bayes Net Sampling Summary
§ Prior Sampling

§ Likelihood Weighting

§ Rejection Sampling

§ Gibbs Sampling


