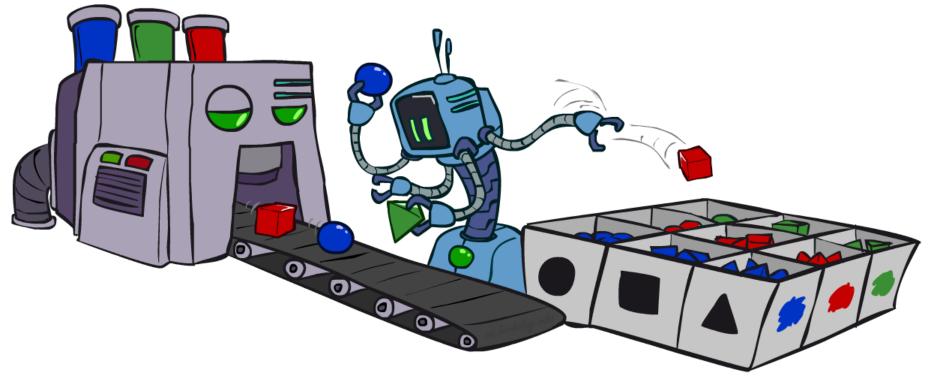
CS 188: Artificial Intelligence

Bayes Nets: Approximate Inference



Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Stuart Russell and Dawn Song)

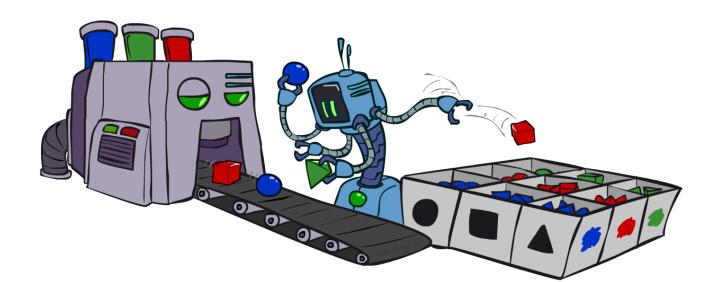
Sampling

Basic idea

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?

- Often very fast to get a decent approximate answer
- The algorithms are very simple and general (easy to apply to fancy models)
- They require very little memory (O(n))
- They can be applied to large models, whereas exact algorithms blow up



Sampling basics: discrete (categorical) distribution

- To simulate a biased d-sided coin:
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized sub-interval of [0,1)

Example

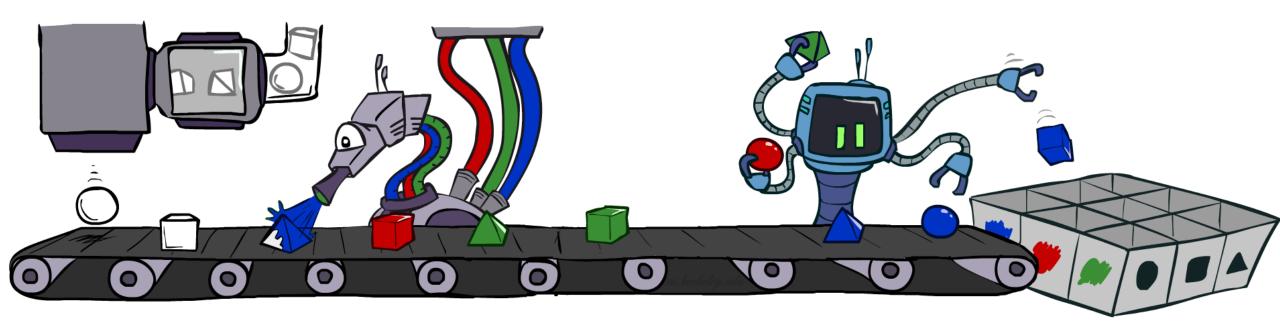
С	<i>P</i> (<i>C</i>)
red	0.6
green	0.1
blue	0.3

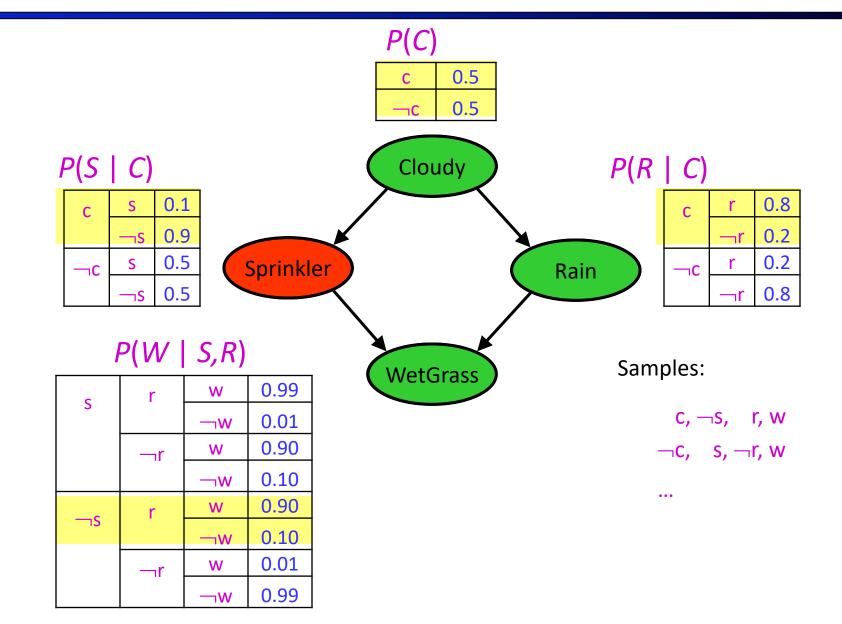
$0.0 \le u < 0.6, \rightarrow C = red$
$0.6 \le u < 0.7$, $\rightarrow C=green$
$0.7 \le u < 1.0, \rightarrow C=blue$

- If random() returns u = 0.83, then the sample is C = blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling





- For i=1, 2, ..., n (in topological order)
 - Sample X_i from $P(X_i | parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$



This process generates samples with probability:

$$S_{PS}(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i)) = P(x_1,...,x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1,...,x_n)$
- Estimate from N samples is $Q_N(x_1,...,x_n) = N_{PS}(x_1,...,x_n)/N$

■ Then
$$\lim_{N\to\infty} Q_N(x_1,...,x_n) = \lim_{N\to\infty} N_{PS}(x_1,...,x_n)/N$$

= $S_{PS}(x_1,...,x_n)$
= $P(x_1,...,x_n)$

I.e., the sampling procedure is consistent

Example

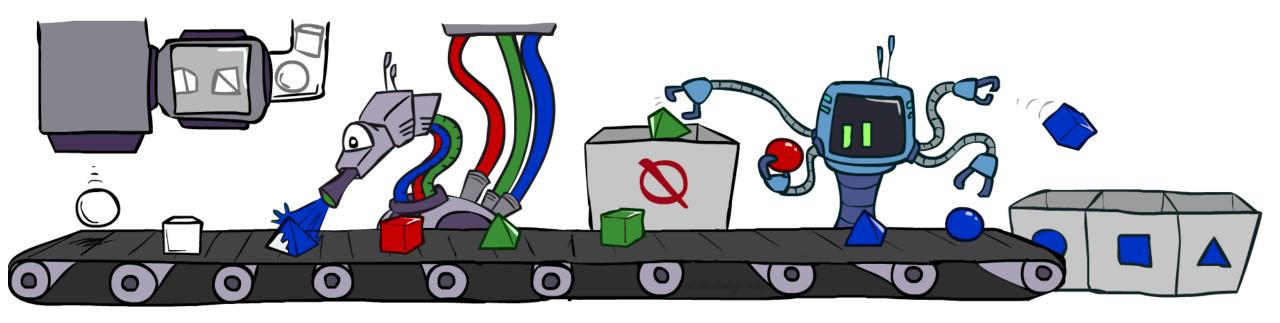
We'll get a bunch of samples from the BN:

```
C, \neg S, r, W
C, S, r, W
\neg C, S, r, \neg W
C, \neg S, r, W
\neg C, \neg S, \neg r, W
```



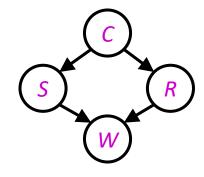
- If we want to know P(W)
 - We have counts <w:4, ¬w:1>
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - P(C | ¬ w)?

Rejection Sampling



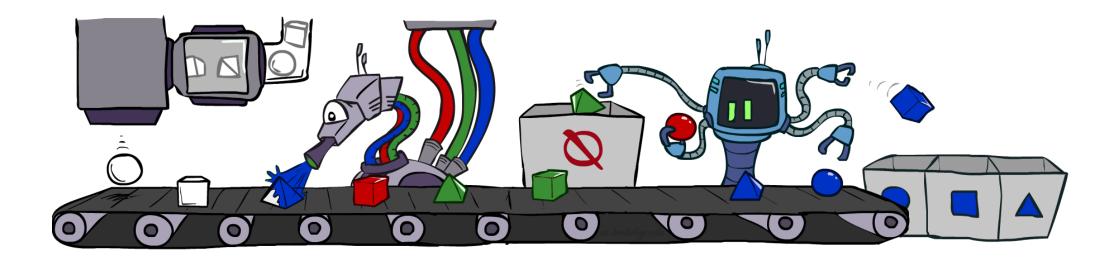
Rejection Sampling

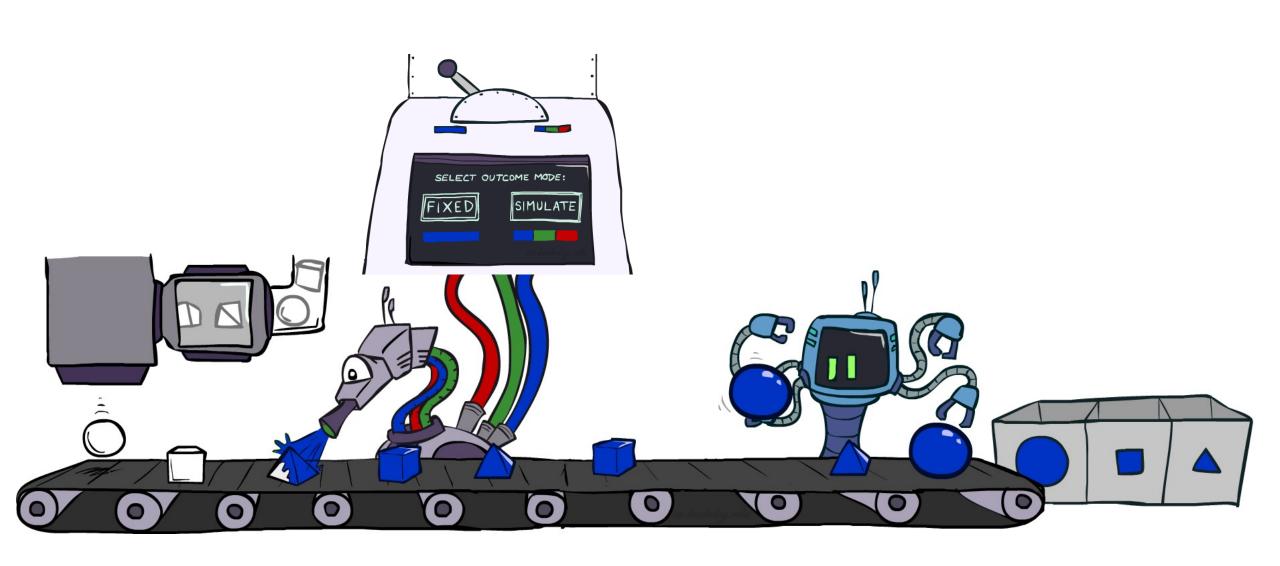
- A simple application of prior sampling for estimating conditional probabilities
 - Let's say we want $P(C | r, w) = \alpha P(C, r, w)$
 - For these counts, samples with ¬r or ¬w are not relevant
 - So count the C outcomes for samples with r, w and reject all other samples
- This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)



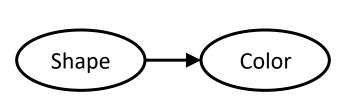
Rejection Sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from $P(X_i | parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$





- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | Color=blue)

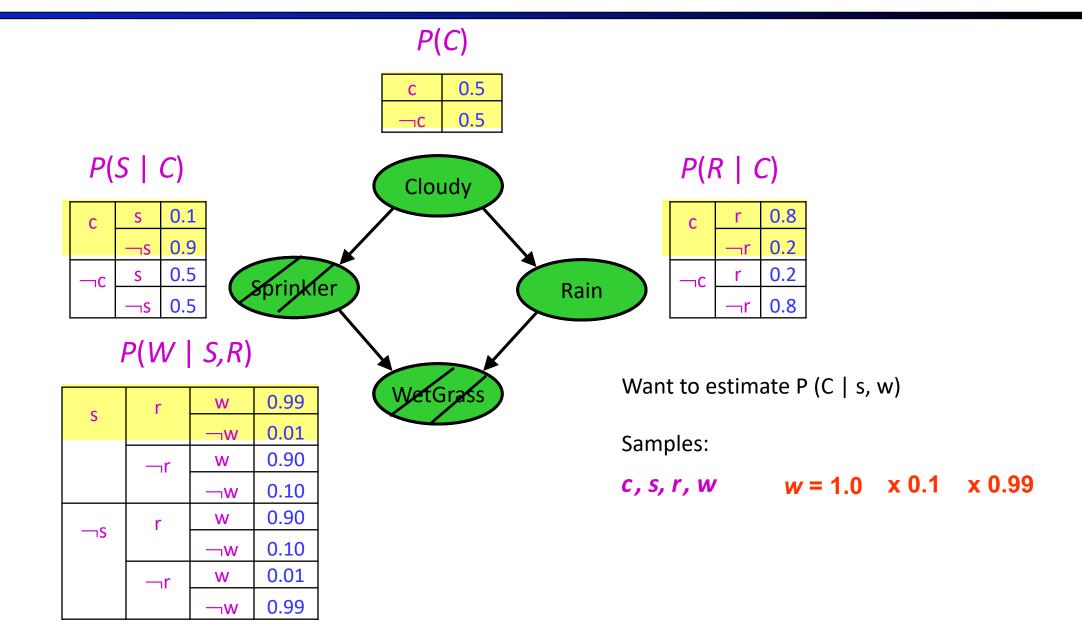


pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

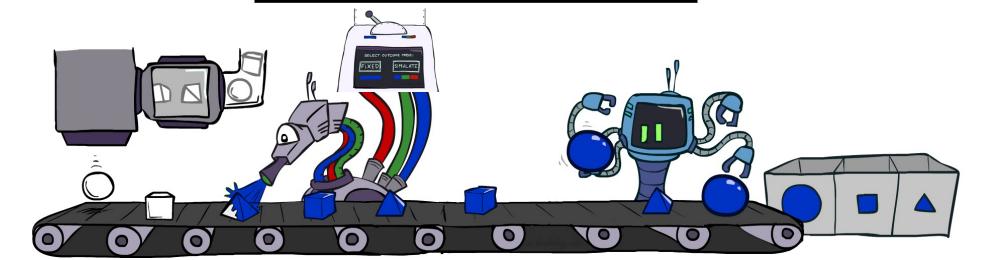


- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents





- Input: evidence $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i \mid parents(X_i))$
 - else
 - Sample x_i from $P(X_i \mid parents(X_i))$
- return $(x_1, x_2, ..., x_n)$, w

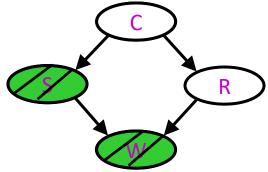


Sampling distribution if Z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i} P(z_i \mid parents(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_k P(e_k \mid parents(E_k))$$



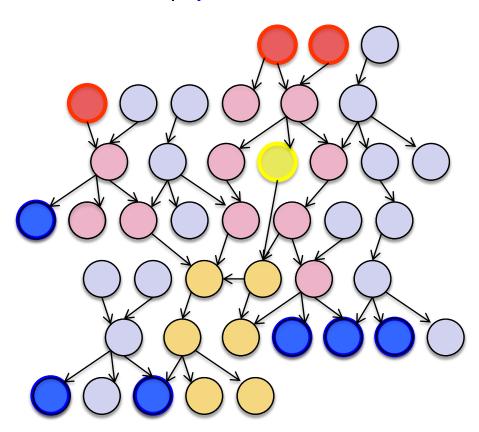
Together, weighted sampling distribution is consistent

$$S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_j \mid parents(Z_j)) \prod_{k} P(e_k \mid parents(E_k))$$

= $P(\mathbf{z}, \mathbf{e})$

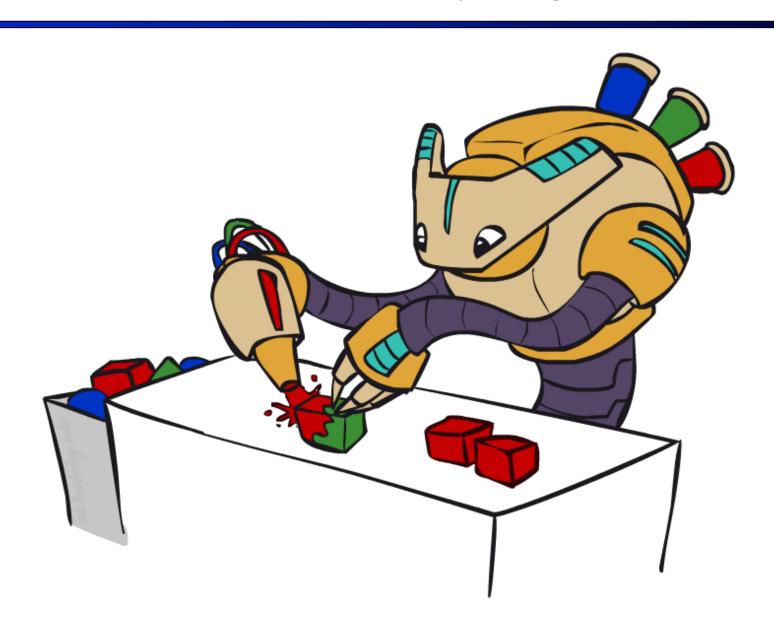
- Likelihood weighting is an example of importance sampling
 - Would like to estimate some quantity based on samples from P
 - P is hard to sample from, so use Q instead
 - Weight each sample x by P(x)/Q(x)

- Likelihood weighting is good
 - All samples are used
 - The values of downstream variables are influenced by upstream evidence



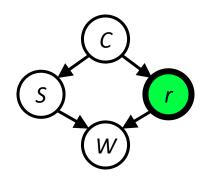
- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - E.g., suppose evidence is a video of a traffic accident
 - With evidence in k leaf nodes, weights will be $O(2^{-k})$
 - With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" all the evidence!

Gibbs Sampling

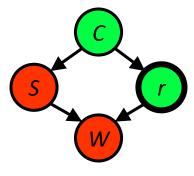


Gibbs Sampling Example: $P(S \mid r)$

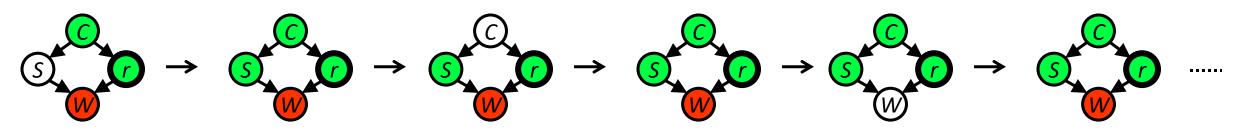
- Step 1: Fix evidence
 - \blacksquare R = true



- Step 2: Initialize other variables
 - Randomly



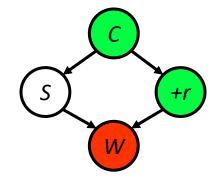
- Step 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)



Resampling of One Variable

• Sample from $P(S \mid +c, +r, -w)$

$$P(S|+c,+r,-w)$$



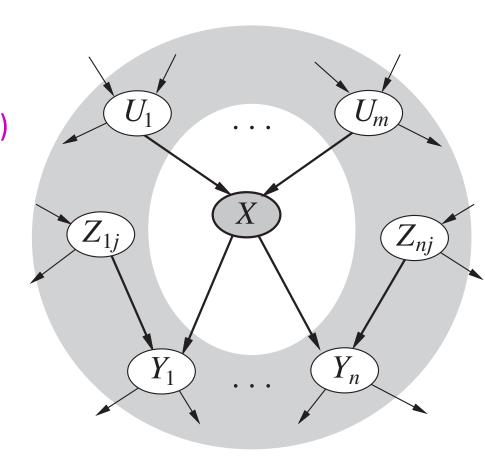
- Many things cancel out only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Resampling of One Variable

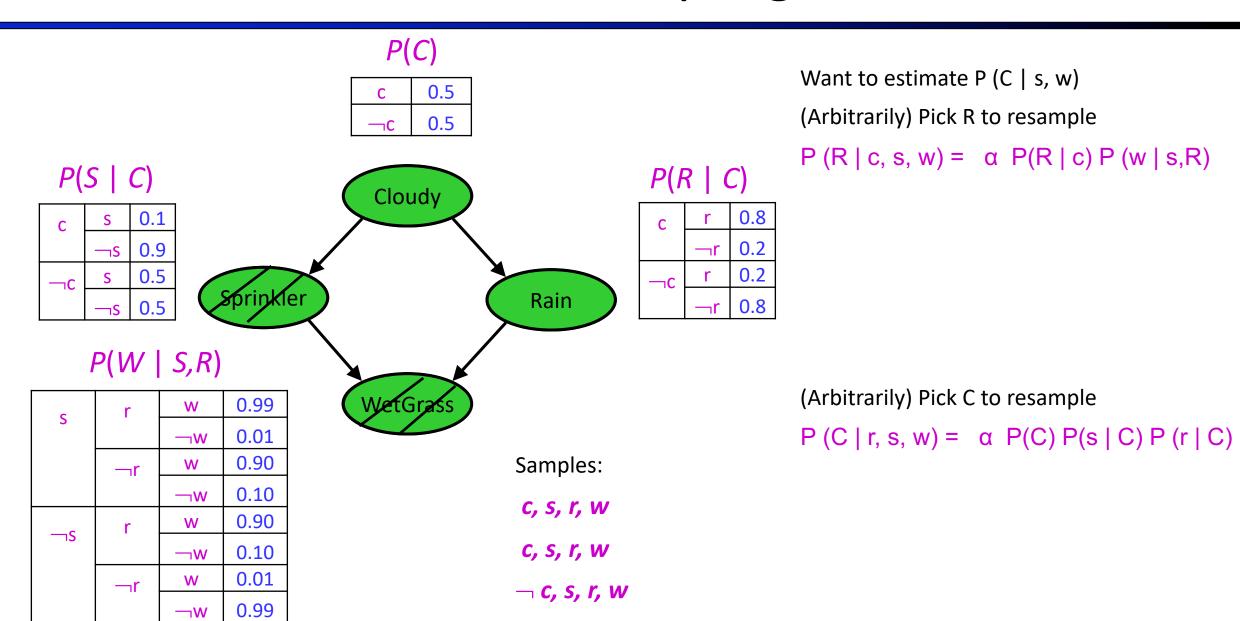
- Repeat many times
 - Sample a non-evidence variable X_i from

$$P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n) = P(X_i \mid markov_blanket(X_i))$$

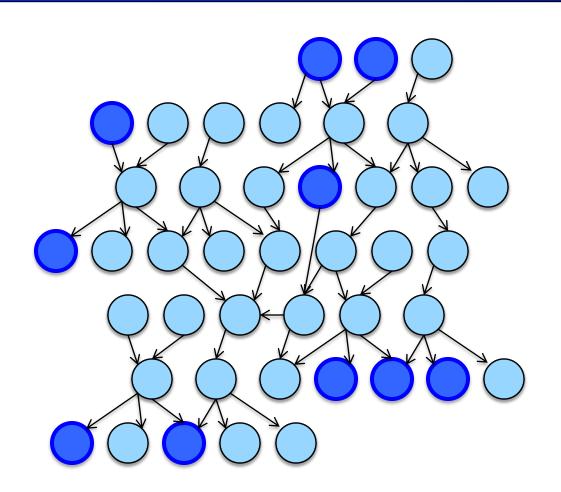
= $\alpha P(X_i \mid parents(X_i)) \prod_j P(y_j \mid parents(Y_j))$



Gibbs Sampling



Why would anyone do this?



Both upstream and downstream variables condition on evidence!

In contrast: likelihood weighting only conditions on upstream evidence, and hence weights obtained in likelihood weighting can sometimes be very small.

More details on Gibbs sampling

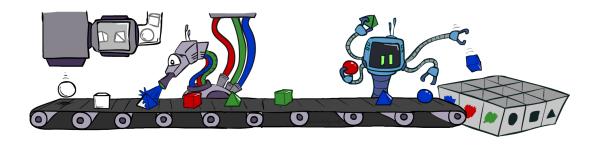
 Gibbs sampling belongs to a family of sampling methods called Markov chain Monte Carlo (MCMC)

Theorem: In the limit of repeating this infinitely many times, the resulting samples come from the correct distribution.*

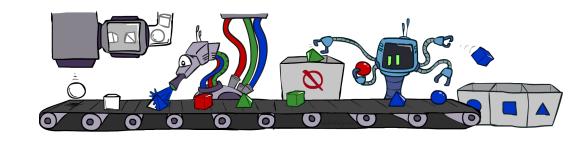
^{*:} Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

Bayes Net Sampling Summary

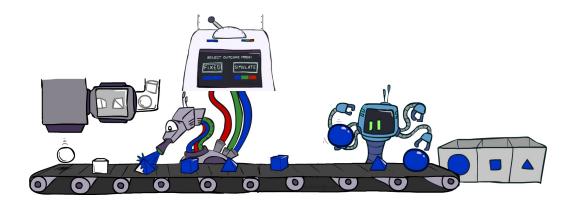
Prior Sampling



Rejection Sampling



Likelihood Weighting



Gibbs Sampling