CS 188: Artificial Intelligence

Markov Models

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Global climate
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

- Value of X at a given time is called the state (usually discrete, finite)

- The transition model $P\left(X_{t} \mid X_{t-1}\right)$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
- x_{t+1} is independent of X_{0}, \ldots, x_{t-1} given X_{t}
- This is a first-order Markov model (a k th-order model allows dependencies on k earlier steps)
- Current observation independent of all else given current state
- Joint distribution $P\left(X_{0}, \ldots, X_{T}\right)=P\left(X_{0}\right) \prod_{t} P\left(X_{t} \mid X_{t-1}\right)$

Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
- Directed acyclic graph, joint = product of conditionals
- No:
- Infinitely many variables (unless we truncate)
- Repetition of transition model not part of standard Bayes net syntax

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P\left(X_{t}=k \mid X_{t-1}=k \pm 1\right)=0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
- How far does it get as a function of t ?
- Expected distance is $O(\sqrt{ } t)$
- Does it get back to 0 or can it go off for ever and not come back?
- In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
- Unigram (zero-order): $P\left(\right.$ Word $\left._{t}=i\right)$
- "logical are as are confusion a may right tries agent goal the was . . ."
- Bigram (first-order): $P\left(\right.$ Word $_{t}=i \mid$ Word $\left._{t-1}=j\right)$
- "systems are very similar computational approach would be represented . . ."
- Trigram (second-order): $P\left(\right.$ Word $_{t}=i \mid$ Word $_{t-1}=j$, Word $\left._{t-2}=k\right)$
- "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, language classification, speech recognition

Example: Weather

- States \{rain, sun $\}$
- Initial distribution $P\left(X_{0}\right)$

$P\left(X_{0}\right)$	
sun	rain
0.5	0.5

Two new ways of representing the same CPT

- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

X_{t-1}	$P\left(X_{t} \mid X_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Weather prediction

- Time 0: <0.5,0.5>

$\mathbf{X}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 1 ?

- $P\left(X_{1}\right)=\sum_{x_{0}} P\left(X_{1}, X_{0}=x_{0}\right)$
- $\quad=\sum_{x_{0}} P\left(X_{0}=x_{0}\right) P\left(X_{1} \mid X_{0}=x_{0}\right)$
- $\quad=0.5<0.9,0.1>+0.5<0.3,0.7>=<0.6,0.4>$

Weather prediction, contd.

- Time 1: <0.6,0.4>

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 2 ?

- $P\left(X_{2}\right)=\sum_{x_{1}} P\left(X_{2}, X_{1}=x_{1}\right)$
- $\quad=\sum_{x_{1}} P\left(X_{1}=x_{1}\right) P\left(X_{2} \mid X_{1}=x_{1}\right)$
- $\quad=0.6<0.9,0.1>+0.4<0.3,0.7>=<0.66,0.34>$

Weather prediction, contd.

- Time 2: <0.66,0.34>

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 3 ?

- $P\left(X_{3}\right)=\sum_{x_{2}} P\left(X_{3}, X_{2}=x_{2}\right)$
- $\quad=\sum_{x_{2}} P\left(X_{2}=x_{2}\right) P\left(X_{3} \mid X_{2}=x_{2}\right)$
- $\quad=0.66<0.9,0.1>+0.34<0.3,0.7>=<0.696,0.304>$

Mini-Forward algorithm

- Iterate this update starting at $t=0$
- This is called a recursive update: $P_{t}=g\left(P_{t-1}\right)=g\left(g\left(g\left(g\left(\ldots P_{0}\right)\right)\right)\right)$

And the same thing in linear algebra

- What is the weather like at time 2?
- $P\left(X_{2}\right)=0.6<0.9,0.1>+0.4<0.3,0.7>=<0.66,0.34>$
- In matrix-vector form:
- $P\left(X_{2}\right)=\left(\begin{array}{cc}0.9 & 0.3 \\ 0.1 & 0.7\end{array}\right)\binom{0.6}{0.4}=\binom{0.66}{0.34}$

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- I.e., multiply by T^{\top}, transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the stationary distribution P_{∞} of the chain
- It satisfies $P_{\infty}=P_{\infty+1}=T^{\top} P_{\infty}$
- Solving for P_{∞} in the example:
$\left(\begin{array}{ll}0.90 .3 \\ 0.1 & 0.7\end{array}\right)\binom{p}{1-p}=\binom{p}{1-p}$
$0.9 p+0.3(1-p)=p$
$p=0.75$
Stationary distribution is <0.75,0.25> regardless of starting distribution

Example Run of Mini-Forward Algorithm

- From initial observation of sun

- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a possible value of a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a random page
- With prob. 1-c, follow a random outlink

- Stationary distribution

- Will spend more time on highly reachable pages
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe evidence E at each time step
- X_{t} is a single discrete variable; E_{t} may be continuous and may consist of several variables

Example: Weather HMM

- An HMM is defined by:

- Initial distribution: $P\left(X_{0}\right)$
- Transition model: $P\left(X_{t} \mid X_{t-1}\right)$
- Sensor model: $\quad P\left(E_{t} \mid X_{t}\right)$

HMM as probability model

- Joint distribution for Markov model: $P\left(X_{0}, \ldots, X_{T}\right)=P\left(X_{0}\right) \prod_{t=1: T} P\left(X_{t} \mid X_{t-1}\right)$
- Joint distribution for hidden Markov model:

$$
P\left(X_{0}, X_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{0}\right) \prod_{t=1: T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:

$$
x_{a: b}=x_{a}, x_{a+1}, \ldots, x_{b}
$$

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)
- Molecular biology:
- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

- Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
- belief state-input to the decision process of a rational agent
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$ for $k>0$
- evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
- better estimate of past states, essential for learning
- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- speech recognition, decoding with a noisy channel

Inference tasks

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

Smoothing: $P\left(X_{k} \mid e_{1: t}\right), k<t$

Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$

Explanation: $\mathrm{P}\left(\mathrm{X}_{1: \mathrm{t}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1: t}=P\left(X_{t} \mid e_{1: t}\right)$ over time
- We start with f_{0} in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations

Example: Robot Localization

Example from

Michael Pfeiffer

Prob | | |
| :--- | :--- |
| $t=0$ | 1 |
| | |

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake
Transition model: action may fail with small prob.

Example: Robot Localization

Prob		

Lighter grey: was possible to get the reading, but less likely (required 1 mistake)

Example: Robot Localization

Prob
0
1
$\mathrm{t}=2$

Example: Robot Localization

Prob
0
1
$\mathrm{t}=3$

Example: Robot Localization

Prob
$t=4$

Example: Robot Localization

Prob
1
$\mathrm{t}=5$

Inference: Base Cases

$P\left(X_{1} \mid e_{1}\right)$
$P\left(X_{1} \mid e_{1}\right)=\frac{P\left(X_{1}, e_{1}\right)}{\sum_{x_{1}} P\left(x_{1}, e_{1}\right)}$
$P\left(X_{1} \mid e_{1}\right)=\frac{P\left(e_{1} \mid X_{1}\right) P\left(X_{1}\right)}{\sum_{x_{1}} P\left(e_{1} \mid x_{1}\right) P\left(x_{1}\right)}$

$$
\begin{gathered}
P\left(X_{2}\right) \\
P\left(X_{2}\right)=\sum_{x_{1}} P\left(x_{1}, X_{2}\right) \\
P\left(X_{2}\right)=\sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1}\right)
\end{gathered}
$$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$

> Apply Bayes' rule

- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$ Apply conditional independence

$$
\left.=\alpha \overline{P\left(e_{t+1}\right.} \mid \underline{X_{t+1}, e_{1: t}}\right) P \sum_{t+1} \mid e_{1}: \square \quad \text { Condition on } X_{t}
$$

$$
=\alpha P\left(e_{t+1} \mid \bar{X}_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

$$
=\bar{\sim} \overline{P\left(e_{t+1}\right)} \overline{\sum_{x_{t}} P\left(e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right)}
$$

Filtering algorithm

- $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}\right)$

- $f_{1: t+1}=\operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right)$
- Cost per time step: $O\left(|X|^{2}\right)$ where $|X|$ is the number of states
- Time and space costs are constant, independent of t
- $O\left(|X|^{2}\right)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtesing algorithms

And the same thing in linear algebra

- Transition matrix T, observation matrix O_{t}
- Observation matrix has state likelihoods for E_{t} along diagonal
- E.g., for $U_{1}=$ true, $O_{1}=\left(\begin{array}{cc}0.2 & 0 \\ 0 & 0.9\end{array}\right)$
- Filtering algorithm becomes
- $f_{1: t+1}=\alpha O_{t+1} T^{\top} f_{1: t}$

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

$\mathbf{W}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman - Hunting Invisible Ghosts with Sonar

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Most Likely Explanation

Inference tasks

- Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
- belief state-input to the decision process of a rational agent
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$ for $k>0$
- evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
- better estimate of past states, essential for learning
- Most likely explanation: arg $\max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- speech recognition, decoding with a noisy channel

Most likely explanation $=$ most probable path

- State trellis: graph of states and transitions over time

$$
\text { - } \begin{aligned}
& \arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right) \\
& =\arg \max _{x_{1: t}} a P\left(x_{1: t}, e_{1: t}\right) \\
= & \arg \max _{x_{1: t}} P\left(x_{1: t}, e_{1: t}\right) \\
& =\arg \max _{x_{1: t}} P\left(x_{0}\right) \prod_{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)
\end{aligned}
$$

- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track of the total probability of all paths to it

$$
\begin{aligned}
& \boldsymbol{f}_{1: t+1}=\operatorname{FORWARD}\left(\boldsymbol{f}_{1: t}, e_{t+1}\right) \\
& \quad=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \boldsymbol{f}_{1: t}
\end{aligned}
$$

Viterbi Algorithm (max)
For each state at time t, keep track of the maximum probability of any path to it

$$
\begin{aligned}
& \boldsymbol{m}_{1: t+1}=\operatorname{VITERBI}\left(\boldsymbol{m}_{1: t}, e_{t+1}\right) \\
& \quad=P\left(e_{t+1} \mid X_{t+1}\right) \max _{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \boldsymbol{m}_{1: t}
\end{aligned}
$$

Viterbi algorithm contd.

$\mathbf{W}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? $\mathrm{O}\left(|\mathrm{X}|^{2} \mathrm{~T}\right)$

Space complexity?
O(|X| T)

Number of paths?
$\mathrm{O}\left(|\mathrm{X}|^{\top}\right)$

Viterbi in negative log space

argmax of product of probabilities

$\mathbf{W}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

= argmin of sum of negative log probabilities
= minimum-cost path
Viterbi is essentially breadth-first graph search What about A^{*} ?

