CS 188: Artificial Intelligence

Markov Models

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)
Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing.
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate

- Need to introduce time into our models.
Markov Models (aka Markov chain/process)

- Value of X at a given time is called the **state** (usually discrete, finite)

 ![Diagram](image)

 $P(X_0)$ \hspace{2cm} $P(X_t \mid X_{t-1})$

- The **transition model** $P(X_t \mid X_{t-1})$ specifies how the state evolves over time

- **Stationarity** assumption: transition probabilities are the same at all times

- **Markov** assumption: “future is independent of the past given the present”
 - X_{t+1} is independent of X_0, \ldots, X_{t-1} given X_t
 - This is a **first-order** Markov model (a kth-order model allows dependencies on k earlier steps)

- Current observation independent of all else given current state

- Joint distribution $P(X_0, \ldots, X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$
Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph, joint = product of conditionals
- No:
 - Infinitely many variables (unless we truncate)
 - Repetition of transition model not part of standard Bayes net syntax
Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k \mid X_{t-1} = k \pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
 - How far does it get as a function of t?
 - Expected distance is $O(\sqrt{t})$
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
Example: n-gram models

- **State:** word at position \(t \) in text (can also build letter n-grams)
- **Transition model** (probabilities come from empirical frequencies):
 - **Unigram** (zero-order): \(P(\text{Word}_t = i) \)
 - “logical are as are confusion a may right tries agent goal the was . . .”
 - **Bigram** (first-order): \(P(\text{Word}_t = i \mid \text{Word}_{t-1} = j) \)
 - “systems are very similar computational approach would be represented . . .”
 - **Trigram** (second-order): \(P(\text{Word}_t = i \mid \text{Word}_{t-1} = j, \text{Word}_{t-2} = k) \)
 - “planning and scheduling are integrated the success of naive bayes model is . . .”
- **Applications:** text classification, language classification, speech recognition
Example: Weather

- **States** \{rain, sun\}

- **Initial distribution** $P(X_0)$

 \[
 \begin{array}{c|cc}
 & \text{sun} & \text{rain} \\
 \text{P(X_0)} & 0.5 & 0.5 \\
 \end{array}
 \]

- **Transition model** $P(X_t \mid X_{t-1})$

 \[
 \begin{array}{c|cc}
 X_{t-1} & \text{sun} & \text{rain} \\
 \text{P(X_t \mid X_{t-1})} & 0.9 & 0.1 \\
 \text{sun} & 0.3 & 0.7 \\
 \text{rain} & 0.3 & 0.7 \\
 \end{array}
 \]

Two new ways of representing the same CPT
Weather prediction

- Time 0: <0.5,0.5>

| x_{t-1} | $P(x_t|x_{t-1})$ |
|-----------|-----------------|
| sun | 0.9 |
| rain | 0.1 |
| sun | 0.3 |
| rain | 0.7 |

- What is the weather like at time 1?
 - $P(x_1) = \sum_{x_0} P(x_1, x_0 = x_0)$
 - $= \sum_{x_0} P(x_0 = x_0) \cdot P(x_1 | x_0 = x_0)$
 - $= 0.5 \cdot <0.9, 0.1> + 0.5 \cdot <0.3, 0.7> = <0.6, 0.4>$
Weather prediction, contd.

- Time 1: <0.6,0.4>

| X_{t-1} | $P(X_t | X_{t-1})$ |
|-----------|------------------|
| sun | 0.9 |
| rain | 0.3 |

- What is the weather like at time 2?

 \[P(X_2) = \sum_{x_1} P(X_2, X_1 = x_1) \]

 \[= \sum_{x_1} P(X_1 = x_1) \cdot P(X_2 | X_1 = x_1) \]

 \[= 0.6 \cdot <0.9,0.1> + 0.4 \cdot <0.3,0.7> = <0.66,0.34> \]
Weather prediction, contd.

- **Time 2**: \(<0.66,0.34> \)

- **What is the weather like at time 3?**
 - \(P(X_3) = \sum_{x_2} P(X_3,X_2=x_2) \)
 - \(= \sum_{x_2} P(X_2=x_2) \cdot P(X_3 | X_2=x_2) \)
 - \(= 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304> \)

| \(X_{t-1} \) | \(P(X_t | X_{t-1}) \) |
|----------------|-----------------|
| sun | 0.9 |
| rain | 0.1 |
| sun | 0.3 |
| rain | 0.7 |
What is the state at time t?

- $P(X_t) = \sum_{x_{t-1}} P(X_t, X_{t-1} = x_{t-1})$
- $= \sum_{x_{t-1}} P(X_{t-1} = x_{t-1}) P(X_t | X_{t-1} = x_{t-1})$

Iterate this update starting at $t=0$

- This is called a recursive update: $P_t = g(P_{t-1}) = g(g(g(... P_0))))$
And the same thing in linear algebra

- What is the weather like at time 2?
 - $P(X_2) = 0.6 <0.9,0.1> + 0.4 <0.3,0.7> = <0.66,0.34>$

- In matrix-vector form:
 - $P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$

- I.e., multiply by T^T, transpose of transition matrix

| X_{t-1} | $P(X_t|X_{t-1})$ |
|-----------|------------------|
| sun | rain |
| sun | 0.9 | 0.1 |
| rain | 0.3 | 0.7 |
Stationary Distributions

- The limiting distribution is called the \textit{stationary distribution} P_∞ of the chain.
- It satisfies $P_\infty = P_{\infty+1} = T^T P_\infty$.
- Solving for P_∞ in the example:

\[
\begin{pmatrix}
0.9 & 0.3 \\
0.1 & 0.7
\end{pmatrix}
\begin{pmatrix}
p \\
1-p
\end{pmatrix}
=
\begin{pmatrix}
p \\
1-p
\end{pmatrix}
\]

$0.9p + 0.3(1-p) = p$

$p = 0.75$

Stationary distribution is $<0.75,0.25>$ \textit{regardless of starting distribution}.
Example Run of Mini-Forward Algorithm

- From initial observation of sun

 \[
 \begin{array}{cc}
 P(X_1) & 1.0 \\
 P(X_2) & 0.9 \\
 P(X_3) & 0.84 \\
 P(X_4) & 0.804 \\
 P(X_\infty) & 0.75
 \end{array}
 \]

- From initial observation of rain

 \[
 \begin{array}{cc}
 P(X_1) & 0.0 \\
 P(X_2) & 1.0 \\
 P(X_3) & 0.3 \\
 P(X_4) & 0.48 \\
 P(X_\infty) & 0.75
 \end{array}
 \]

- From yet another initial distribution \(P(X_1) \):

 \[
 \begin{array}{cc}
 P(X_1) & p \\
 P(X_\infty) & 0.75
 \end{array}
 \]
Application of Stationary Distribution: Web Link Analysis

- **PageRank over a web graph**
 - Each web page is a possible value of a state
 - Initial distribution: uniform over pages
 - Transitions:
 - With prob. c, uniform jump to a random page
 - With prob. $1-c$, follow a random outlink

- **Stationary distribution**
 - Will spend more time on highly reachable pages
 - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)
Hidden Markov Models
Hidden Markov Models

- Usually the true state is not observed directly

- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence E at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables
Example: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_0)$
- Transition model: $P(X_t|X_{t-1})$
- Sensor model: $P(E_t|X_t)$

| W_{t-1} | $P(W_t|W_{t-1})$ |
|-----------|------------------|
| sun | rain |
| sun | 0.9 | 0.1 |
| rain | 0.3 | 0.7 |

| W_t | $P(U_t|W_t)$ |
|-------|--------------|
| true | false |
| sun | 0.2 | 0.8 |
| rain | 0.9 | 0.1 |
HMM as probability model

- Joint distribution for Markov model: \(P(X_0, \ldots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) \)
- Joint distribution for hidden Markov model:
 \[P(X_0, X_1, \ldots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t) \]
- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:
\[X_{a:b} = X_a, X_{a+1}, \ldots, X_b \]
Real HMM Examples

- **Speech recognition HMMs:**
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)

- **Machine translation HMMs:**
 - Observations are words (tens of thousands)
 - States are translation options

- **Robot tracking:**
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

- **Molecular biology:**
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.
Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - *belief state*—input to the decision process of a rational agent

- **Prediction**: $P(X_{t+k} | e_{1:t})$ for $k > 0$
 - evaluation of possible action sequences; like filtering without the evidence

- **Smoothing**: $P(X_k | e_{1:t})$ for $0 \leq k < t$
 - better estimate of past states, essential for learning

- **Most likely explanation**: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel
Inference tasks

Filtering: $P(X_t | e_{1:t})$

Prediction: $P(X_{t+k} | e_{1:t})$

Smoothing: $P(X_k | e_{1:t}), k < t$

Explanation: $P(X_{1:t} | e_{1:t})$
Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t | e_{1:t})$ over time.

- We start with f_0 in an initial setting, usually uniform.

- Filtering is a fundamental task in engineering and science.

- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations.
Example: Robot Localization

Example from Michael Pfeiffer

$t=0$

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.
Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely (required 1 mistake)
Example: Robot Localization

\[t=2 \]
Example: Robot Localization

\[t=3 \]
Example: Robot Localization

![Diagram of robot localization]

Prob

0

1

$t=4$
Example: Robot Localization

t=5

Prob
0 1
Inference: Base Cases

\[P(X_1 | e_1) \]

\[P(X_1 | e_1) = \frac{P(X_1, e_1)}{\sum_{x_1} P(x_1, e_1)} \]

\[P(X_1 | e_1) = \frac{P(e_1 | X_1) P(X_1)}{\sum_{x_1} P(e_1 | x_1) P(x_1)} \]

\[P(X_2) \]

\[P(X_2) = \sum_{x_1} P(x_1, X_2) \]

\[P(X_2) = \sum_{x_1} P(X_2 | x_1) P(x_1) \]
Aim: devise a *recursive filtering* algorithm of the form

\[P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t})) \]

\[P(X_{t+1} | e_{1:t+1}) = \]
Filtering algorithm

- **Aim**: devise a *recursive filtering* algorithm of the form
 \[P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t})) \]

- \[P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1}) \]
 \[= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t}) \]
 \[= \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t}) \]
 \[= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t}) \]
 \[\sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t) \]

- Apply Bayes’ rule
- Apply conditional independence
- Condition on \(X_t \)
- Apply conditional independence
- Normalize
- Update
- Predict
Filtering algorithm

- $P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) \ P(X_{t+1} | x_t)$

- $f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1})$

- Cost per time step: $O(|X|^2)$ where $|X|$ is the number of states

- Time and space costs are constant, independent of t

- $O(|X|^2)$ is infeasible for models with many state variables

- We get to invent really cool approximate filtering algorithms
And the same thing in linear algebra

- Transition matrix T, observation matrix O_t
 - Observation matrix has state likelihoods for E_t along diagonal
 - E.g., for $U_1 = \text{true}$, $O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$

- Filtering algorithm becomes
 - $f_{1:t+1} = \alpha O_{t+1}T^T f_{1:t}$

\[
\begin{array}{|c|c|c|}
\hline
X_{t-1} & P(X_t|X_{t-1}) \\
\hline
\text{sun} & 0.9 & 0.1 \\
\text{rain} & 0.3 & 0.7 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
W_i & P(U_i|W_i) \\
\hline
\text{true} & \text{false} \\
\hline
\text{sun} & 0.2 & 0.8 \\
\text{rain} & 0.9 & 0.1 \\
\hline
\end{array}
\]
Example: Weather HMM

- $f(\text{sun}) = 0.5$
- $f(\text{rain}) = 0.5$

Transition Probabilities

| W_{t-1} | $P(W_t | W_{t-1})$ |
|-----------|---------------------|
| sun | 0.9 |
| rain | 0.1 |

Emission Probabilities

| W_t | $P(U_t | W_t)$ |
|-------|---------------|
| sun | 0.2 |
| rain | 0.8 |

- $f(\text{sun}) = 0.25$
- $f(\text{rain}) = 0.75$

- $f(\text{sun}) = 0.154$
- $f(\text{rain}) = 0.846$
Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]
Most Likely Explanation
Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - *belief state*—input to the decision process of a rational agent

- **Prediction**: $P(X_{t+k} | e_{1:t})$ for $k > 0$
 - evaluation of possible action sequences; like filtering without the evidence

- **Smoothing**: $P(X_k | e_{1:t})$ for $0 \leq k < t$
 - better estimate of past states, essential for learning

- **Most likely explanation**: $\arg\max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel
Most likely explanation = most probable path

- **State trellis**: graph of states and transitions over time

 ![State Trellis Diagram]

 - Each arc represents some transition $x_{t-1} \rightarrow x_t$
 - Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
 - The **product** of weights on a path is proportional to that state sequence’s probability
 - Forward algorithm computes sums of paths, **Viterbi algorithm** computes best paths

\[
\text{arg max}_{x_{1:t}} P(x_{1:t} | e_{1:t}) = \text{arg max}_{x_{1:t}} \alpha \prod_t P(x_t | x_{t-1}) P(e_t | x_t)
\]
Forward Algorithm (sum)
For each state at time \(t \), keep track of the total probability of all paths to it

\[
f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) f_{1:t}
\]

Viterbi Algorithm (max)
For each state at time \(t \), keep track of the maximum probability of any path to it

\[
m_{1:t+1} = \text{VITERBI}(m_{1:t}, e_{t+1}) = P(e_{t+1}|X_{t+1}) \max_{x_t} P(X_{t+1}|x_t) m_{1:t}
\]
Viterbi algorithm contd.

Time complexity? \(O(|X|^2 T) \)

Space complexity? \(O(|X| T) \)

Number of paths? \(O(|X|^T) \)

Table 1: \(P(W_t | W_{t-1}) \)

| \(W_{t-1} \) | \(P(W_t | W_{t-1}) \) |
|--------------|------------------------|
| sun | 0.9 0.1 |
| rain | 0.3 0.7 |

Table 2: \(P(U_t | W_t) \)

| \(W_t \) | \(P(U_t | W_t) \) |
|-----------|---------------------|
| true | 0.2 0.8 |
| false | 0.9 0.1 |
Viterbi in negative log space

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

Viterbi is essentially breadth-first graph search
What about A*?