
CS 188: Artificial Intelligence
Viterbi Algorithm and Particle Filters

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Markov Chains

§ Stationarity assumption: transition probabilities are the same at all times
§ Markov assumption: “future is independent of the past given the present”
§ Mini-Forward Algorithm: P(Xt) = åxt-1 P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)
§ Equivalently: Pt+1 = TT Pt

§ Stationary Distribution: P¥ = TT P¥
§ Stationary distribution does not depend on the starting distribution

X1X0 X2 X3
P(X0) P(Xt | Xt-1)

Hidden Markov Models

§ Sensor models are the same at all times
§ Current evidence is independent of everything else given the current state
§ Filtering: calculate the distribution f1:t = P(Xt|e1:t) .
§ Forward Algorithm: Predict (Time Elapse), Update, Normalize.
§ Forward Algorithm: P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)
§ Equivalently: f1:t+1 = α Ot+1TT f1:t

§ Most likely explanation: arg maxx1:tP(x1:t | e1:t)

X5X1X0 X2 X3

E1 E2 E3 E5

Example: Weather HMM

Umbrella1 Umbrella2

Weather0 Weather1 Weather2

f(sun) = 0.5
f(rain) = 0.5

0.6
0.4

f(sun) = 0.25
f(rain) = 0.75

0.45
0.55

f(sun) = 0.154
f(rain) = 0.846

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict predict
update update

Example: Passage of Time

§ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Example: Observation

§ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

Particle Filtering

We need a new algorithm!

§ When size of the state space is large, exact inference becomes infeasible
§ Likelihood weighting also fails completely – number of samples needed

grows exponentially with T

X1X0 X2 X3

E1 E2 E3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Av
g a

bs
olu

te
err

or

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Solution: approximate inference

§ Track samples of X, not all values

§ Samples are called particles

§ Time per step is linear in the number of samples

§ But: number needed may be large

§ In memory: list of particles, not states

Representation: Particles

§ Our representation of P(X) is now a list of N << |X| particles

§ P(x) approximated by number of particles with value x

§ So, many x may have P(x) = 0 !

§ More particles => more accuracy

§ For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Prediction Step

§ Each particle is moved by sampling its next
position from the transition model

§ This is like prior sampling – samples’ frequencies
reflect the transition probabilities

§ Here, most samples move clockwise, but some move in
another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before and

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

§ After observing et+1 :

§ As in likelihood weighting, weight each
sample based on the evidence
§ w(j) = P(et+1|xt+1

(j))

§ Normalize the weights: particles that fit
the data better get higher weights, others
get lower weights

Particle Filtering: Update step

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particle Filtering: Resample

§ Rather than tracking weighted samples,
we resample

§ N times, we choose from our weighted
sample distribution
(i.e., draw with replacement)

§ Now the update is complete for this
time step, continue with the next one
(with weights reset to 1)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

§ The problem of likelihood weighting: sample state trajectories go off into
low-probability regions; too few “reasonable” samples

§ Solution: kill the bad ones, make more of the good ones
§ This way the population of samples stays in the high-probability region

t=2 t=7

Particle Filtering: Resample

Summary: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Prediction Update/Weight Resample

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]Consistency: see proof in AIMA Ch. 14

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter SLAM

[Demo: PARTICLES-SLAM-fastslam.avi]

Most Likely Explanation

§ Most likely explanation: arg maxx1:t
P(x1:t | e1:t)

19

Most Likely Explanation

Most likely explanation = most probable path

§ State trellis: graph of states and transitions over time

§ arg maxx1:tP(x1:t | e1:t) = arg maxx1:t P(x0) Õt P(xt | xt-1) P(et | xt)

§ Each arc represents some transition xt-1 ® xt
§ Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0))
§ The product of weights on a path is proportional to that state sequence’s probability
§ Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1 … XT

Viterbi algorithm

X0 X1 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true U2=false U3=true

0.5

0.5

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

• Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0))
• The product of weights on a path is proportional to that state sequence’s probability
• The best way to go to a state S in timestep t+1 is first going to some state S’ in

timestep t with the best way, and then go from S’ to S at timestep t+1.

Viterbi algorithm contd.

X0 X1 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true U2=false U3=true

0.5

0.5

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

• Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0))
• The product of weights on a path is proportional to that state sequence’s probability
• The best way to go to a state S in timestep t+1 is first going to some state S’ in

timestep t with the best way, and then go from S’ to S at timestep t+1.

0.18

0.63

0.09

0.06

Viterbi algorithm contd.

Time complexity?
O(|X|2 T)

X0 X1 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true U2=false U3=true

0.5

0.5

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X| T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)

0.18

0.63

0.09

0.06

Viterbi in negative log space

argmax of product of probabilities
= argmin of sum of negative log probabilities

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.72

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables at time t can have parents at time t-1

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

t =1 t =2

G3
a

E3a E3b

G3
b

t =3

DBNs and HMMs

§ Every HMM is a single-variable DBN
§ Every discrete DBN is an HMM

§ HMM state is Cartesian product of DBN state variables

§ Sparse dependencies => exponentially fewer parameters in DBN
§ E.g., 20 state variables, 3 parents each;

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters

Xt+1Xt

Yt+1Yt

Zt+1Zt
XYZt+1XYZt

Exact Inference in DBNs

§ Variable elimination applies to dynamic Bayes nets

§ Offline: “unroll” the network for T time steps, then eliminate variables to find P(XT|e1:T)

§ Online: eliminate all variables from the previous time step; store factors for current time only
§ Problem: largest factor contains all variables for current time (plus a few more)

t =1 t =2 t =3

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

G3
a

E3a E3b

G3
bG3
b

DBN Particle Filters

§ A particle is a complete sample for a time step

§ Initialize: Generate prior samples for the t=1 Bayes net
§ Example particle: G1

a = (3,3) G1
b = (5,3)

§ Elapse time: Sample a successor for each particle
§ Example successor: G2

a = (2,3) G2
b = (6,3)

§ Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample
§ Likelihood: P(E2

a |G2
a) * P(E2

b |G2
b)

§ Resample: Select prior samples (tuples of values) in proportion to their likelihood

G1
a

G1
b

G2
a

E2a E2b

G2
b

G3
a

E3a E3b

G3
bG3
b

