CS 188: Artificial Intelligence Viterbi Algorithm and Particle Filters

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Markov Chains

- **Stationarity** assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
- Mini-Forward Algorithm: $P(X_t) = \sum_{X_{t-1}} P(X_{t-1} = x_{t-1}) P(X_t | X_{t-1} = x_{t-1})$
- Equivalently: $P_{t+1} = T^T P_t$
- Stationary Distribution: $P_{\infty} = T^T P_{\infty}$
- Stationary distribution does not depend on the starting distribution

Hidden Markov Models

- Sensor models are the same at all times
- Current evidence is independent of everything else given the current state
- Filtering: calculate the distribution $f_{1:t} = P(X_t | e_{1:t})$.
- Forward Algorithm: Predict (Time Elapse), Update, Normalize.
- Forward Algorithm: $P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$
- Equivalently: $\mathbf{f}_{1:t+1} = \alpha O_{t+1} T^T \mathbf{f}_{1:t}$
- Most likely explanation: arg max_{x1:t} P(x1:t | e1:t)

Example: Weather HMM

W _{t-1}	P(W _t W _{t-1})		
	sun	rain	
sun	0.9	0.1	
rain	0.3	0.7	

W _t	P(U _t W _t)		
	true	false	
sun	0.2	0.8	
rain	0.9	0.1	

Example: Passage of Time

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

As time passes, uncertainty "accumulates"

T = 1

T = 2

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Particle Filtering

We need a new algorithm!

- When size of the state space is large, exact inference becomes infeasible
- Likelihood weighting also fails completely number of samples needed grows *exponentially* with *T*

Particle Filtering

- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N << |X| particles</p>
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles => more accuracy
- For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Prediction Step

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(3,3)(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2) (2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3)(3,2) (2,2)

Particle Filtering: Update step

- After observing *e*_{t+1}:
 - As in likelihood weighting, weight each sample based on the evidence

• $w^{(j)} = P(e_{t+1} | x_{t+1}^{(j)})$

 Normalize the weights: particles that fit the data better get higher weights, others get lower weights Particles:

(3,2) (2,3) (3,2) (3,1)

(3,3)

(3,2) (1,3)

(2,3)

(3,2) (2,2)

Particles:

(3,2) w=.9

(2,3) w=.2 (3,2) w=.9

(3,1) w=.4 (3,3) w=.4 (3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we *resample*
- N times, we choose from our weighted sample distribution (i.e., draw with replacement)
- Now the update is complete for this time step, continue with the next one (with weights reset to 1)

(1,3) (2,3) (3,2) (3,2)

Particle Filtering: Resample

- The problem of likelihood weighting: sample state trajectories go off into low-probability regions; too few "reasonable" samples
- Solution: kill the bad ones, make more of the good ones
- This way the population of samples stays in the high-probability region

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 14

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter SLAM

[Demo: PARTICLES-SLAM-fastslam.avi]

Most Likely Explanation

Most Likely Explanation

• Most likely explanation: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t}) = \arg \max_{x_{1:t}} P(x_0) \prod_t P(x_t | x_{t-1}) P(e_t | x_t)$
- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, *Viterbi algorithm* computes best paths

Viterbi algorithm

- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The *product* of weights on a path is proportional to that state sequence's probability
- The best way to go to a state S in timestep t+1 is first going to some state S' in timestep t with the best way, and then go from S' to S at timestep t+1.

Viterbi algorithm contd.

- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The *product* of weights on a path is proportional to that state sequence's probability
- The best way to go to a state S in timestep t+1 is first going to some state S' in timestep t with the best way, and then go from S' to S at timestep t+1.

Viterbi algorithm contd.

W _{t-1}	P(W _t W _{t-1})		
	sun	rain	
sun	0.9	0.1	
rain	0.3	0.7	

W _t	P(U _t W _t)		
	true	false	
sun	0.2	0.8	
rain	0.9	0.1	

Time complexity? O(|X|² T) Space complexity? O(|X|T) Number of paths? O(|X|^T)

Viterbi in negative log space

W _{t-1}	$P(W_t W_{t-1})$		
	sun	rain	
sun	0.9	0.1	
rain	0.3	0.7	

W _t	P(U _t W _t)		
	true	false	
sun	0.2	0.8	
rain	0.9	0.1	

argmax of product of probabilities

= argmin of sum of negative log probabilities

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables at time t can have parents at time t-1

DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
 - HMM state is Cartesian product of DBN state variables

- Sparse dependencies => exponentially fewer parameters in DBN
 - E.g., 20 state variables, 3 parents each;
 DBN has 20 x 2³ = 160 parameters, HMM has 2²⁰ x 2²⁰ =~ 10¹² parameters

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Offline: "unroll" the network for T time steps, then eliminate variables to find P(X_T | e_{1:T})

- Online: eliminate all variables from the previous time step; store factors for current time only
- Problem: largest factor contains all variables for current time (plus a few more)

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: G₁^a = (3,3) G₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: P(E₂^a | G₂^a) * P(E₂^b | G₂^b)
- **Resample:** Select prior samples (tuples of values) in proportion to their likelihood

