CS 188: Artificial Intelligence
Viterbi Algorithm and Particle Filters

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Markov Chains

--*

P(X¢ | Xt1)

Stationarity assumption: transition probabilities are the same at all times
Markov assumption: “future is independent of the past given the present”
Mini-Forward Algorithm: P(X;) = 2., P(X,.1=X,.1) P(X;| Xp.1=X1)
Equivalently: P,,, = T" P,

Stationary Distribution: P =T"P_

Stationary distribution does not depend on the starting distribution

Hidden Markov Models

Q=006 -+

Sensor models are the same at all times

Current evidence is independent of everything else given the current state
Filtering: calculate the distribution f,.. = P(X;|e4.;) .

Forward Algorithm: Predict (Time Elapse), Update, Normalize.

Forward Algorithm: P(X,,; [€1...1) = & P(eyq | Xpia) th P(x; | e1.) P(Xpia | X)
Equivalently: f,.;,. =a O, T" fi,

Most likely explanation: arg max, P(xq.; | €.

Example: Weather HMM [([//ﬁ},;/(

0.6 0.45
predict 0.4 predict /= 0.35
l update l update
W4 P(W,IW,,)
f(sun) = 0.5 f(sun) =0.25 f(sun) = 0.154 sun | rain
f(rain) = 0.5 f(rain) = 0.75 f(rain) = 0.846 un | 05 | ou
rain 0.3 0.7
Wt P(Utlwt)
true false
P(W,)
- sun 0.2 0.8
sun rain
rain 0.9 0.1
0.5 0.5

Example: Passage of Time

= As time passes, uncertainty “accumulates’ (Transition model: ghosts usually go clockwise)

ITTTTT ETTTTE
ITTTTET TTCEEE
TTCTTT TECTTE
<0.01/|<0.01 <0.01

<o . 01

T=5

Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases’

Before observation After observation

B(X) «x P(e|X)B'(X)

Particle Filtering

Avg absolute error

We need a new algorithm!

= When size of the state space is large, exact inference becomes infeasible

= Likelihood weighting also fails completely — number of samples needed
grows exponentially with T

DT NGO RE

LW(25) — oo
LW(100) —~— /

LW(1000) = /
0.8 I LW(10000) ~ 7
ER/SOF(25) -+ 4

0.6 |

04 r

02t

4 ’ LV -

Ropd s B KK a oA

gkéﬁfxﬁxﬁvﬁéa BB AN ADDBNADDAN pLBAD NN DA BADNDDDD DA
5L 1 1 1 1 1 1 1

O 5 10 15 20 25 30 35 40 45 50
Time step

0

Particle Filtering

= Solution: approximate inference

Track samples of X, not all values

Samples are called particles

Time per step is linear in the number of samples
But: number needed may be large

In memory: list of particles, not states

0.0 | 0.1 | 00

0.0 | 0.0 | 0.2

0.0 | 02 | 05
O

o0

o0 | o0

Representation: Particles

= Qur representation of P(X) is now a list of N << | X]| particles

" P(x) approximated by number of particles with value x
= So, many x may have P(x) =0 |

= More particles => more accuracy

= For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Prediction Step

= Each particle is moved by sampling its next
position from the transition model

v’ = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)

Particles:
(3,2)

s [
o |

3] I

o |8°

Particle Filtering: Update step

= After observing e, :

= As in likelihood weighting, weight each
sample based on the evidence

= Wi = P&, Xp.1™)

= Normalize the weights: particles that fit
the data better get higher weights, others
get lower weights

Particles:

Y
N

ML ENER

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

Particle Filtering: Resample

= Rather than tracking weighted samples,
we resample

= N times, we choose from our weighted
sample distribution
(i.e., draw with replacement)

= Now the update is complete for this
time step, continue with the next one
(with weights reset to 1)

(/

&

Particles:

(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:

(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

e’

Particle Filtering: Resample

= The problem of likelihood weighting: sample state trajectories go off into
low-probability regions; too few “reasonable” samples

= Solution: kill the bad ones, make more of the good ones

= This way the population of samples stays in the high-probability region

Summary: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Prediction Update/Weight Resample
@0
o |o% o Tee | o CI
SRE - %3 BR
o °
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

Consistency: see proof in AIMA Ch. 14 [Demos: ghostbusters particle filtering (L15D3,4,5)]

Particle Filter Localization (Sonar)

Global localization with
© SONAr SENSOrs '

Particle Filter SLAM

[Demo: PARTICLES-SLAM-fastslam.avi]

Most Likely Explanation

. v |
=g K

‘,ﬁ‘\

i

Most Likely Explanation

" Most likely explanation: arg max, P(x.| e;4)

19

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

< sun sun sun sun

rain rain rain rain

X, X4 X7

arg max,. P(xq. | e1.) = arg max, P(xp) Ht P(x; | x¢-1) Pleg | x¢)
Each arc represents some transition x;_; — X;

Each arc has weight P(x; | x;_1) P(e; | x;) (arcs to initial states have weight P(x))
The product of weights on a path is proportional to that state sequence’s probability
Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Viterbi algorithm

%: sun sun
0.5 rain rain
X0 X1

U,=true U,=false Usz=true

W4 P(W,|W,,)
sun rain
sun 0.9 0.1
rain 0.3 0.7
W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1

Each arc has weight P(x; | x,,) P(e, | x,) (arcs to initial states have weight P(x,))
The product of weights on a path is proportional to that state sequence’s probability

The best way to go to a state S in timestep t+1 is first going to some state S’ in

timestep t with the best way, and then go from S’ to S at timestep t+1.

Viterbi algorithm contd.

W, P(W,|W,,)
0.5 0.0136080 sun_| rain
sun 0.9 0.1

rain 0.3 0.7

0.5 0.0138495

XO X]_ X2 XT true false

2)
Ui=true U,=false Us=true wn | 02 | 0
rain 0.9 0.1

Each arc has weight P(x; | x,,) P(e, | x,) (arcs to initial states have weight P(x,))

The product of weights on a path is proportional to that state sequence’s probability
The best way to go to a state S in timestep t+1 is first going to some state S’ in
timestep t with the best way, and then go from S’ to S at timestep t+1.

Viterbi algorithm contd.

0.5

-

Time complexity?
o(|X]2T)

X1
U,=true U,=false

<
N

Space complexity?
o(IX]| T)

0.0136080

0.0138495

AT
Us=true

W4 P(W,|W,,)
sun rain
sun 0.9 0.1
rain 0.3 0.7
W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1

Number of paths?

o(|x]T)

Viterbi in negative log space

W, P(W,|W,,)
sun rain
1.0 sun sun
sun 0.9 0.1
S
rain 0.3 0.7
1.0 rain ‘{ rain
W, P(U.[W,)
true false
G sun 0.2 0.8
rain 0.9 0.1

argmax of product of probabilities
= argmin of sum of negative log probabilities

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using (°

multiple sources of evidence % ;é (V7
- \@,

|dea: Repeat a fixed Bayes net structure at each time ’“/3/

Variables at time t can have parents at time t-1

t=1 t=2 t=3

DBNs and HMMs

= Every HMM is a single-variable DBN

= Every discrete DBN is an HMM
= HMM state is Cartesian product of DBN state variables

= Sparse dependencies => exponentially fewer parameters in DBN

= E.g., 20 state variables, 3 parents each;
DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 102 parameters

Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

= Offline: “unroll” the network for T time steps, then eliminate variables to find P(X;|e;.7)

t=1 t=2 t=3

= Online: eliminate all variables from the previous time step; store factors for current time only
= Problem: largest factor contains all variables for current time (plus a few more)

DBN Particle Filters

A particle is a complete sample for a time ste
P P P P 6. G0 @
Initialize: Generate prior samples for the t=1 Bayes net Gy® G2’
= Example particle: G;2= (3,3) G;*= (5,3) T @ @

Elapse time: Sample a successor for each particle
= Example successor: G,2=(2,3) G,”=(6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

» Likelihood: P(E,? |G,?) * P(E,” | G,)

Resample: Select prior samples (tuples of values) in proportion to their likelihood

