CS 188: Artificial Intelligence

 Viterbi Algorithm and Particle Filters

Markov Chains

- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
- Mini-Forward Algorithm: $P\left(X_{t}\right)=\sum_{x_{t-1}} P\left(X_{t-1}=x_{t-1}\right) P\left(X_{t} \mid X_{t-1}=x_{t-1}\right)$
- Equivalently: $P_{\mathrm{t}+1}=T^{\top} P_{\mathrm{t}}$
- Stationary Distribution: $P_{\infty}=T^{\top} P_{\infty}$
- Stationary distribution does not depend on the starting distribution

Hidden Markov Models

- Sensor models are the same at all times
- Current evidence is independent of everything else given the current state
- Filtering: calculate the distribution $f_{1: t}=P\left(X_{t} \mid e_{1: t}\right)$.
- Forward Algorithm: Predict (Time Elapse), Update, Normalize.
- Forward Algorithm: $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}\right)$
- Equivalently: $f_{1: t+1}=\alpha O_{t+1} T^{\top} f_{1: t}$
- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$

Example: Weather HMM

$\mathbf{W}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

$\mathrm{T}=2$
(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
T $=5$					
5					

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Particle Filtering

We need a new algorithm!

- When size of the state space is large, exact inference becomes infeasible
- Likelihood weighting also fails completely - number of samples needed grows exponentially with T

Particle Filtering

- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

- But: number needed may be large
- In memory: list of particles, not states

Representation: Particles

- Our representation of $P(X)$ is now a list of $N \ll|X|$ particles
- $P(x)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!
- More particles => more accuracy

Particles:
$(3,3)$

Particle Filtering: Prediction Step

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Update step

- After observing e_{t+1} :
- As in likelihood weighting, weight each sample based on the evidence
- $w^{(j)}=P\left(e_{t+1} \mid x_{t+1}^{(j)}\right)$
- Normalize the weights: particles that fit the data better get higher weights, others get lower weights
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$
$(3,2) w=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(3,1) \mathrm{w}=.4$
$(3,3) \mathrm{w}=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) \mathrm{w}=.1$
$(2,3) w=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) \quad w=.4$

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e., draw with replacement)
- Now the update is complete for this time step, continue with the next one

Particles:

$(3,2) w=.9$
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) w=.4$
$(3,3) w=.4$
$(3,2) w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) w=.9$
$(2,2) w=.4$
(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Particle Filtering: Resample

- The problem of likelihood weighting: sample state trajectories go off into low-probability regions; too few "reasonable" samples
- Solution: kill the bad ones, make more of the good ones
- This way the population of samples stays in the high-probability region

Summary: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Particle Filter Localization (Sonar)

Global localization with

40000

Particle Filter SLAM

Most Likely Explanation

Most Likely Explanation

- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$

Most likely explanation $=$ most probable path

- State trellis: graph of states and transitions over time

- $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)=\arg \max _{x_{1: t}} P\left(x_{0}\right) \prod_{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$
- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Viterbi algorithm

$\mathbf{W}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state sequence's probability
- The best way to go to a state S in timestep $t+1$ is first going to some state S^{\prime} in timestep t with the best way, and then go from S^{\prime} to S at timestep $t+1$.

Viterbi algorithm contd.

$\mathbf{W}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state sequence's probability
- The best way to go to a state S in timestep $t+1$ is first going to some state S^{\prime} in timestep t with the best way, and then go from S^{\prime} to S at timestep $\mathrm{t}+1$.

Viterbi algorithm contd.

$\mathbf{W}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? $\mathrm{O}\left(|\mathrm{X}|^{2} \mathrm{~T}\right)$

Space complexity?
O(|X| T)

Number of paths?
$\mathrm{O}\left(|\mathrm{X}|^{\top}\right)$

Viterbi in negative log space

$\mathbf{W}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

argmax of product of probabilities
= argmin of sum of negative log probabilities

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables at time t can have parents at time $t-1$

DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
- HMM state is Cartesian product of DBN state variables

- Sparse dependencies => exponentially fewer parameters in DBN
- E.g., 20 state variables, 3 parents each; DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20}=^{\sim} 10^{12}$ parameters

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Offline: "unroll" the network for T time steps, then eliminate variables to find $P\left(X_{T} \mid e_{1: T}\right)$

- Online: eliminate all variables from the previous time step; store factors for current time only
- Problem: largest factor contains all variables for current time (plus a few more)

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $\mathrm{t}=1$ Bayes net
- Example particle: $\mathbf{G}_{\mathbf{1}}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$

- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{2}{ }^{a} \mid G_{2}{ }^{a}\right) * P\left(E_{2}{ }^{\mathbf{b}} \mid \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

