Dynamic Bayes Nets

Hidden Markov Models

- Sensor models are the same at all times
- Current evidence is independent of everything else given the current state
- Filtering: calculate the distribution $f_{1: t}=P\left(X_{t} \mid e_{1: t}\right)$.
- Forward Algorithm: Predict (Time Elapse), Update, Normalize.
- Forward Algorithm: $P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}\right)$
- Equivalently: $f_{1: t+1}=\alpha O_{t+1} T^{\top} f_{1: t}$
- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables at time t can have parents at time $t-1$

DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
- HMM state is Cartesian product of DBN state variables

- Sparse dependencies => exponentially fewer parameters in DBN
- E.g., 20 state variables, 3 parents each; DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20}=^{\sim} 10^{12}$ parameters

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Offline: "unroll" the network for T time steps, then eliminate variables to find $P\left(X_{T} \mid e_{1: T}\right)$

- Online: eliminate all variables from the previous time step; store factors for current time only
- Problem: largest factor contains all variables for current time (plus a few more)

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $\mathrm{t}=1$ Bayes net
- Example particle: $\mathbf{G}_{\mathbf{1}}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$

- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{2}{ }^{a} \mid G_{2}{ }^{a}\right) * P\left(E_{2}{ }^{\mathbf{b}} \mid \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

CS 188: Artificial Intelligence

 Rational Decisions
(Slides adapted Stuart Russell and Dawn Song)

Utilities

Maximum Expected Utility

- Principle of maximum expected utility:
- A rational agent should choose the action that maximizes its expected utility, given its knowledge
- Questions:
- Where do utilities come from?
- How do we know such utilities even exist?

- How do we know that averaging even makes sense?
- What if our behavior (preferences) can't be described by utilities?

The need for numbers

- For worst-case minimax reasoning, terminal value scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- The optimal decision is invariant under any monotonic transformation
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any "rational" preferences can be summarized as a utility function

- We hard-wire utilities and let behaviors emerge
- Why don't we let agents pick utilities?
- Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes

Preferences

- An agent must have preferences among:

A Prize

A Lottery

- Preference: $A \succ B$
- Indifference: $A \sim B$

Rationality

Rational Preferences

- We want some constraints on preferences before we call them rational, such as:

$$
\text { Axiom of Transitivity: }(A>B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

- For example: an agent with intransitive preferences can be induced to give away all of its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

$$
\begin{aligned}
& \text { Orderability: } \\
& \qquad(A \succ B) \vee(B \succ A) \vee(A \sim B)
\end{aligned}
$$

Transitivity:
$(A>B) \wedge(B>C) \Rightarrow(A>C)$
Continuity:
$(A>B>C) \Rightarrow \exists p[p, A ; 1-\mathrm{p}, C] \sim B$
Substitutability:
$(A \sim B) \Rightarrow[p, A ; 1-\mathrm{p}, C] \sim[p, B ; 1-\mathrm{p}, C]$
Monotonicity:

$$
\begin{aligned}
& (A \succ B) \Rightarrow \\
& \quad(p \geq q) \Leftrightarrow[p, A ; 1-\mathrm{p}, B] \succ[q, A ; 1-\mathrm{q}, B]
\end{aligned}
$$

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A)>U(B) \Leftrightarrow A>B ; U(A)=U(B) \Leftrightarrow A \sim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=p_{1} U\left(S_{1}\right)+\ldots+p_{n} U\left(S_{n}\right)
\end{aligned}
$$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Optimal policy invariant under positive affine transformation $U^{\prime}=a U+b, a>0$

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: rationality does not require representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe

Human Utilities

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
- Compare a prize A to a standard lottery L_{p} between
- "best possible prize" u_{T} with probability p
- "worst possible catastrophe" u_{\perp} with probability 1-p
- Adjust lottery probability p until indifference: $A \sim L_{p}$

- Resulting p is a utility in $[0,1]$

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery $L=[p, \$ X ;(1-p), \$ Y]$
- The expected monetary value $\mathrm{EMV}(\mathrm{L})=p X+(1-p) Y$
- The utility is $U(L)=p U(\$ X)+(1-p) U(\$ Y)$
- Typically, $U(L)<U(E M V(L))$

- In this sense, people are risk-averse
- E.g., how much would you pay for a lottery ticket L=[0.5, \$10,000; 0.5, \$0]?
- The certainty equivalent of a lottery $\operatorname{CE}(L)$ is the cash amount such that $C E(L) \sim L$
- The insurance premium is $\mathrm{EMV}(L)-\mathrm{CE}(L)$
- If people were risk-neutral, this would be zero!

(a)

(b)

Decision Networks

Decision Networks

In its most general form, a decision network represents information about

- Its current state
- Its possible actions
- The state that will result from its actions
- The utility of that state

Decision network $=$ Bayes net + Actions + Utilities

Decision Networks

Decision Networks

- Decision network = Bayes net + Actions + Utilities
- Chance nodes (just like BNs)
- Action nodes (rectangles, cannot have parents, will have value fixed by algorithm)
- Utility nodes (diamond, depends on action and chance nodes)
- Decision algorithm:
- Fix evidence e

Bayes net inference!

- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility $\sum_{w} P(w \mid e, a) U(a, w)$

- Return action with highest expected utility

Maximum Expected Utility

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave })=\sum_{w} P(w) U(\text { leave }, w) \\
& =0.7 \cdot 100+0.3 \cdot 0=70
\end{aligned}
$$

Umbrella $=$ take

$$
\begin{aligned}
& \mathrm{EU}(\text { take })=\sum_{w} P(w) U(\text { take }, w) \\
& =0.7 \cdot 20+0.3 \cdot 70=35
\end{aligned}
$$

W	$P(W)$
sun	0.7
rain	0.3

Optimal decision = leave

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$
\operatorname{MEU}(\varnothing)=\max _{a} \mathrm{EU}(a)=70
$$

Decisions as Outcome Trees

- Almost exactly like expectimax!
- What's changed?

Example: Take an umbrella?

Example: Take an umbrella?

- Decision algorithm:
- Fix evidence e
- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e)$ for parents W of U
- Compute expected utility of action $a: \sum_{w} P(w \mid e) U(a, w)$
- Return the action with highest expected utility

Umbrella = leave

$$
\text { EU(leave } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { leave }, w)
$$

We have: $P(W) P(F \mid W)$

$$
\begin{aligned}
P(W \mid F) & =\frac{P(W, F)}{\sum_{w} P(w, F)} \\
& =\frac{P(F \mid W) P(W)}{\sum_{w} P(F \mid w) P(w)}
\end{aligned}
$$

W	$P(W)$
sun	0.7

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Example: Take an umbrella?

- Decision algorithm:
- Fix evidence e
- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility of action $a: \sum_{w} P(w \mid e, a) U(a, w)$

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

- Return action with highest expected utility

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { leave }, w) \\
& \quad=0.34 \times 100+0.66 \times 0=34
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \text { EU }(\text { take } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { take }, w) \\
& \quad=0.34 \times 20+0.66 \times 70=53
\end{aligned}
$$

Optimal decision = take!

Decisions as Outcome Trees

Decision network with utilities on outcome states

