
Dynamic Bayes Nets

Hidden Markov Models

§ Sensor models are the same at all times

§ Current evidence is independent of everything else given the current state

§ Filtering: calculate the distribution f1:t = P(Xt|e1:t) .

§ Forward Algorithm: Predict (Time Elapse), Update, Normalize.

§ Forward Algorithm: P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt
P(xt | e1:t) P(Xt+1| xt)

§ Equivalently: f1:t+1 = α Ot+1TT f1:t

§ Most likely explanation: arg maxx1:t
P(x1:t | e1:t)

X5X1X0 X2 X3

E1 E2 E3 E5

Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables at time t can have parents at time t-1

G1a

E1a E1b

G1b

G2a

E2a E2b

G2b

t =1 t =2

G3a

E3a E3b

G3b

t =3

DBNs and HMMs

§ Every HMM is a single-variable DBN

§ Every discrete DBN is an HMM
§ HMM state is Cartesian product of DBN state variables

§ Sparse dependencies => exponentially fewer parameters in DBN
§ E.g., 20 state variables, 3 parents each;

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters

Xt+1Xt

Yt+1Yt

Zt+1Zt
XYZt+1XYZt

Exact Inference in DBNs

§ Variable elimination applies to dynamic Bayes nets

§ Offline: “unroll” the network for T time steps, then eliminate variables to find P(XT|e1:T)

§ Online: eliminate all variables from the previous time step; store factors for current time only

§ Problem: largest factor contains all variables for current time (plus a few more)

t =1 t =2 t =3

G1a

E1a E1b

G1b

G2a

E2a E2b

G2b

G3a

E3a E3b

G3bG3b

DBN Particle Filters

§ A particle is a complete sample for a time step

§ Initialize: Generate prior samples for the t=1 Bayes net
§ Example particle: G1

a = (3,3) G1
b = (5,3)

§ Elapse time: Sample a successor for each particle
§ Example successor: G2

a = (2,3) G2
b = (6,3)

§ Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample
§ Likelihood: P(E2

a |G2
a) * P(E2

b |G2
b)

§ Resample: Select prior samples (tuples of values) in proportion to their likelihood

G1a

G1b

G2a

E2
a E2

b

G2b

G3a

E3
a E3

b

G3bG3b

CS 188: Artificial Intelligence
Rational Decisions

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted Stuart Russell and Dawn Song)

Utilities

Maximum Expected Utility

§ Principle of maximum expected utility:
§ A rational agent should choose the action that maximizes its

expected utility, given its knowledge

§ Questions:
§ Where do utilities come from?
§ How do we know such utilities even exist?
§ How do we know that averaging even makes sense?
§ What if our behavior (preferences) can’t be described by utilities?

The need for numbers

§ For worst-case minimax reasoning, terminal value scale doesn’t matter
§ We just want better states to have higher evaluations (get the ordering right)
§ The optimal decision is invariant under any monotonic transformation

§ For average-case expectimax reasoning, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Utilities

§ Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

§ Where do utilities come from?
§ In a game, may be simple (+1/-1)
§ Utilities summarize the agent’s goals
§ Theorem: any “rational” preferences can

be summarized as a utility function

§ We hard-wire utilities and let
behaviors emerge
§ Why don’t we let agents pick utilities?
§ Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes
Getting ice cream

Get Single Get Double

Oops Whew!

Preferences

§ An agent must have preferences among:
§ Prizes: P1, P2, etc.
§ Lotteries: situations with uncertain prizes

L = [p, P1; (1-p), P2]

§ Notation:
§ Preference: A ≻ B
§ Indifference: A ~ B

P1 P2

p 1-p

A LotteryA Prize

P1

Rationality

§ We want some constraints on preferences before we call them rational, such as:

§ For example: an agent with intransitive preferences can
be induced to give away all of its money
§ If B > C, then an agent with C would pay (say) 1 cent to get B
§ If A > B, then an agent with B would pay (say) 1 cent to get A
§ If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

Axiom of Transitivity: (A ≻ B) Ù (B ≻ C) Þ (A ≻ C)

Orderability:
(A ≻ B) Ú (B ≻ A) Ú (A ~ B)

Transitivity:
(A ≻ B) Ù (B ≻ C) Þ (A ≻ C)

Continuity:
(A ≻ B ≻ C) Þ $p [p, A; 1-p, C] ~ B

Substitutability:
(A ~ B) Þ [p, A; 1-p, C] ~ [p, B; 1-p, C]

Monotonicity:
(A ≻ B) Þ

(p ³ q) Û [p, A; 1-p, B] ≻ [q, A; 1-q, B]

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

§ Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
§ Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

U(A) > U(B) Û A ≻ B; U(A) = U(B) Û A ~ B
U([p1,S1; … ; pn,Sn]) = p1U(S1) + … + pnU(Sn)

§ I.e. values assigned by U preserve preferences of both prizes and lotteries!
§ Optimal policy invariant under positive affine transformation U’ = aU+b, a>0

§ Maximum expected utility (MEU) principle:
§ Choose the action that maximizes expected utility
§ Note: rationality does not require representing or manipulating utilities and probabilities

§ E.g., a lookup table for perfect tic-tac-toe

MEU Principle

Human Utilities

§ Utilities map states to real numbers. Which numbers?

§ Standard approach to assessment (elicitation) of human utilities:
§ Compare a prize A to a standard lottery Lp between

§ “best possible prize” uT with probability p
§ “worst possible catastrophe” u^ with probability 1-p

§ Adjust lottery probability p until indifference: A ~ Lp
§ Resulting p is a utility in [0,1]

Human Utilities

0.999999 0.000001

No change

Pay $50

Instant death

Money

§ Money does not behave as a utility function, but we can
talk about the utility of having money (or being in debt)

§ Given a lottery L = [p, $X; (1-p), $Y]
§ The expected monetary value EMV(L) = pX + (1-p)Y
§ The utility is U(L) = pU($X) + (1-p)U($Y)

§ Typically, U(L) < U(EMV(L))

§ In this sense, people are risk-averse
§ E.g., how much would you pay for a lottery ticket

L=[0.5, $10,000; 0.5, $0]?
§ The certainty equivalent of a lottery CE(L) is the

cash amount such that CE(L) ~ L
§ The insurance premium is EMV(L) - CE(L)

§ If people were risk-neutral, this would be zero!

U

$ $
-150,000 800,000

(a) (b)

o

o

o
o
o

o
o

o o
o oo o o o o o

U

Decision Networks

Decision Networks

In its most general form, a decision network represents information about
• Its current state
• Its possible actions
• The state that will result from its actions
• The utility of that state

Decision network = Bayes net + Actions + Utilities

Decision Networks

Weather

Forecast

Umbrella

U

Decision Networks

Weather

Forecast

Umbrella

U

§ Decision network = Bayes net + Actions + Utilities
§ Chance nodes (just like BNs)

§ Action nodes (rectangles, cannot have parents, will have
value fixed by algorithm)

§ Utility nodes (diamond, depends on action and chance
nodes)

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Bayes net inference!

Maximum Expected Utility

Weather

Umbrella

U

W P(W)
sun 0.7
rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)
leave sun 100
leave rain 0
take sun 20
take rain 70

Decisions as Outcome Trees

§ Almost exactly like expectimax!
§ What’s changed?

U(t,s)

Weather | {} Weather | {}

take leave

{}

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsunWeather

Umbrella

U

U

Example: Take an umbrella?

Weather

Forecast
=bad

Umbrella

A W U(A,W)

leave sun 100
leave rain 0
take sun 20
take rain 70

W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

U

§ Decision algorithm:

§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e) for parents W of U
§ Compute expected utility of action a: åw P(w|e) U(a,w)

§ Return the action with highest expected utility

Example: Take an umbrella?

Weather

Forecast

=bad

Umbrella

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave
W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

EU(leave|F=bad) = åw P(w|F=bad) U(leave,w)

Bayes net inference!

P(W) P(F|W)We have:

P(W|F) =
P(W, F)

Âw P(w, F)

=
P(F|W)P(W)

Âw P(F|w)P(w)

U

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility of action a: åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Example: Take an umbrella?

Weather

Forecast
=bad

Umbrella

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take!

W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

EU(leave|F=bad) = åw P(w|F=bad) U(leave,w)

= 0.34x100 + 0.66x0 = 34

EU(take|F=bad) = åw P(w|F=bad) U(take,w)

= 0.34x20 + 0.66x70 = 53

Bayes net inference!

Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

take leave

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

{b}

Weather

Forecast
=bad

Umbrella

U

Decision network with utilities on outcome states

Weather

Forecast
=bad

Umbrella

U

Wet FeelStupid U

dry false 100
wet true 0
dry true 20

damp false 70
W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

Wet

FeelStupid

Here, U is a true utility.

With an action node as parent, it is
sometimes called a Q-value

