CS 188: Artificial Intelligence

Decision Networks + VPI

(Slides adapted Stuart Russell and Dawn Song)

Decision Networks

- Decision network = Bayes net + Actions + Utilities
- Chance nodes (just like BNs)
- Action nodes (rectangles, cannot have parents, will have value fixed by algorithm)
- Utility nodes (diamond, depends on action and chance nodes)
- Decision algorithm:
- Fix evidence e

Bayes net inference!

- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility $\sum_{w} P(w \mid e, a) U(a, w)$

- Return action with highest expected utility

Maximum Expected Utility

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave })=\sum_{w} P(w) U(\text { leave }, w) \\
& =0.7 \cdot 100+0.3 \cdot 0=70
\end{aligned}
$$

Umbrella $=$ take

$$
\begin{aligned}
& \mathrm{EU}(\text { take })=\sum_{w} P(w) U(\text { take }, w) \\
& =0.7 \cdot 20+0.3 \cdot 70=35
\end{aligned}
$$

W	$P(W)$
sun	0.7
rain	0.3

Optimal decision = leave

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$
\operatorname{MEU}(\varnothing)=\max _{a} \mathrm{EU}(a)=70
$$

Example: Take an umbrella?

- Decision algorithm:
- Fix evidence e
- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility of action $a: \sum_{w} P(w \mid e, a) U(a, w)$

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

- Return action with highest expected utility

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { leave }, w) \\
& \quad=0.34 \times 100+0.66 \times 0=34
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \text { EU }(\text { take } \mid F=\text { bad })=\sum_{w} P(w \mid F=\text { bad }) U(\text { take }, w) \\
& \quad=0.34 \times 20+0.66 \times 70=53
\end{aligned}
$$

Optimal decision = take!

Example: Take an umbrella?

- Decision algorithm:
- Fix evidence e
- For each possible action a
- Fix action node to a
- Compute posterior $P(W \mid e, a)$ for parents W of U
- Compute expected utility of action $a: \sum_{w} P(w \mid e, a) U(a, w)$

A	W	$U(A, W)$
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

- Return action with highest expected utility

Umbrella = leave

W	$P(W)$
sun	0.7

EU $($ leave $\mid F=$ good $)=\sum_{w} P(w \mid F=$ good $) U($ leave,$w)$

$$
=0.89 \times 100+0.11 \times 0=89
$$

Umbrella = take

$$
\begin{aligned}
& \text { EU(take } \mid F=\text { good })=\sum_{w} P(w \mid F=\text { good }) U(\text { take }, w) \\
& \quad=0.89 \times 20+0.11 \times 70=26
\end{aligned}
$$

Optimal decision = leave!

Value of Information

A question to motivate VPI

How do you tell if you want to take a specific class next semester?

Value of Perfect Information

- Idea: compute value of acquiring evidence
- Can be done directly from decision network
- Example: buying oil drilling rights
- Two blocks A and B, exactly one has oil, worth k
- You can drill in one location
- Prior probabilities 0.5 each, \& mutually exclusive
- Drilling in either A or B has $E U=k / 2, M E U=k / 2$
- Question: what's the value of information of O?
- Value of knowing which of A or B has oil
- Value is expected gain in MEU from new info
- If we know OilLoc, MEU is k (either way)
- Gain in MEU from knowing OilLoc?
- VPI(OilLoc) $=k-k / 2=k / 2$
- Fair price of information: $k / 2$

D	O	U
a	a	k
a	b	0
b	a	0
b	b	k

Value of information

- Before you see the forecast (no evidence)
- $\operatorname{MEU}(\varnothing)=\max _{\mathrm{a}} \mathrm{EU}(\mathrm{a})=70$
- What if you look at the forecast?
- If Forecast=bad
- $\operatorname{MEU}(F=b a d)=\max _{\mathrm{a}} \mathrm{EU}(\mathrm{a} \mid \mathrm{F}=\mathrm{bad})=53$
- If Forecast=good
- $\operatorname{MEU}(F=$ good $)=\max _{\mathrm{a}} \mathrm{EU}$ (a
Bayes net inference!
- But, we don't know what the ahead of time!
- So we need a distribution of $P(F)$

F	$P(F)$
good	0.65
bad	0.35

- Expected utility given forecast

$$
\text { - } \quad=0.35 \times 53+0.65 \times 89=76.4
$$

- Value of information $=76.4-70=6.4$

Value of Information

- Assume we have evidence $\mathrm{E}=\mathrm{e}$. Value if we act now:

$$
\operatorname{MEU}(e)=\max _{a} \sum_{s} P(s \mid e) U(s, a)
$$

- Assume we see that $\mathrm{E}^{\prime}=\mathrm{e}^{\prime}$. Value if we act then:

$\operatorname{MEU}\left(e, e^{\prime}\right)=\max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)$
- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E^{\prime} is revealed and then we act:

$$
\operatorname{MEU}\left(e, E^{\prime}\right)=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)
$$

- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$
\operatorname{VPI}\left(E^{\prime} \mid e\right)=\operatorname{MEU}\left(e, E^{\prime}\right)-\operatorname{MEU}(e)
$$

Value of Information

$$
\begin{array}{r}
\operatorname{MEU}\left(e, E^{\prime}\right)=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right) \\
=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)
\end{array}
$$

$$
\begin{aligned}
& \operatorname{MEU}(e)=\max _{a} \sum_{s} P(s \mid e) U(s, a) \\
&=\max _{a} \sum_{e^{\prime}} \sum_{s} P\left(s, e^{\prime} \mid e\right) U(s, a) \\
&=\max _{a} \sum_{e^{\prime}} P\left(e \mid e^{\prime}\right) \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)
\end{aligned}
$$

VPI Properties

VPI is non-negative! $\operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right) \geq 0$

VPI is not (usually) additive: $\operatorname{VPI}\left(E_{i}, E_{j} \mid e\right) \neq \operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right)+\operatorname{VPI}\left(E_{j} \mid e\right)$

VPI is order-independent: $\operatorname{VPI}\left(E_{i}, E_{j} \mid \mathrm{e}\right)=\operatorname{VPI}\left(E_{j}, E_{i} \mid e\right)$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You' re playing the lottery. The prize will be $\$ 0$ or
 $\$ 100$. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing

- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- VPI(Scout) ?
- VPI(Scout | ScoutingReport) ?
- Generally:

If Parents(U) $\underline{\|}^{Z}$ | CurrentEvidence) Then VPI(Z|CurrentEvidence) $=0$

Decisions with unknown preferences

- In reality the assumption that we can write down our exact preferences for the machine to optimize is false
- A machine optimizing the wrong preferences causes problems

Decisions with unknown preferences

- In reality the assumption that we can write down our exact preferences for the machine to optimize is false
- A machine optimizing the wrong preferences causes problems
- A machine that is explicitly uncertain about the human's preferences will defer to the human (e.g., allow itself to be switched off)

Off-switch problem (example)

Off-switch problem (general proof)

- $E U(a c t)=\int_{-\infty}^{+\infty} P(u) \cdot u d u=\int_{-\infty}^{0} P(u) \cdot u d u+\int_{0}^{+\infty} P(u) \cdot u d u$
- $E U($ wait $)=\int_{-\infty}^{0} P(u) \cdot 0 d u+\int_{0}^{+\infty} P(u) \cdot u d u$
- Obviously $\int_{-\infty}^{0} P(u) \cdot u d u \leq \int_{-\infty}^{0} P(u) \cdot 0 d u$
- Hence $E U(a c t) \leq E U$ (wait)
- "If H doesn't switch me off, then the action must be good for H , and l 'll get to do it, so that's good; if H does switch me off, then it's because the action must be bad for H , so it's good that I won't be allowed to do it."

CS 188: Artificial Intelligence Markov Decision Processes

Instructor: Angela Liu and Yanlai Yang
University of California, Berkeley

Sequential decisions under uncertainty

So far, decision problem is one-shot --- concerning only one action

Sequential decision problem: agent's utility depends on a sequence of actions

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
- Small "living" reward r each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Markov Decision Process (MDP)

- Environment history: $\left[\mathrm{s}_{0}, \mathrm{a}_{0}, \mathrm{~s}_{1}, \mathrm{a}_{1}, \ldots, \mathrm{~s}_{\mathrm{t}}\right]$
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad= \\
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

Andrey Markov (1856-1922)

- This is just like search, where the successor function could only depend on the current state (not the history)

Markov Decision Process (MDP)

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition model $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s^{\prime}, i.e., $P\left(s^{\prime} \mid s, a\right)$
- A reward function $R\left(s, a, s^{\prime}\right)$ for each transition
- A start state
- Possibly a terminal state (or absorbing state)
- Utility function which is additive (discounted) rewards

- MDPs are fully observable but probabilistic search problems

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Policies

- A policy π gives an action for each state, $\pi: S \rightarrow A$
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow A$
- An optimal policy maximizes expected utility
- An explicit policy defines a reflex agent

Optimal policy for r>0

$$
r>0
$$

Optimal policy for r>0

Sample Optimal Policies

(a)

$r<-1.6497$

$-0.7311<r<-0.4526$

(b)

Figure 17.2 (a) The optimal policies for the stochastic environment with $r=-0.04$ for transitions between nonterminal states. There are two policies because in state (3,1) both Left and Up are optimal. (b) Optimal policies for four different ranges of r.

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree

MDP Search Trees

- Each MDP state projects an expectimax-like search tree

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? $\quad[1,2,2]$ or $\quad[2,3,4]$
- Now or later? $[0,0,1]$ or $[1,0,0]$

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

Worth r now

Worth Y next step

Worth $y^{2} r$ in two steps

- Discounting with γ conveniently solves the problem of infinite reward streams!
- Geometric series: $1+\gamma+\gamma^{2}+\ldots=1 /(1-\gamma)$
- Assume rewards bounded by $\pm R_{\max }$
- Then $r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\ldots$ is bounded by $\pm R_{\max } /(1-\gamma)$
- (Another solution: environment contains a terminal state; and agent reaches it with probability 1)

Discounting

- How to discount?
- Each time we descend a level, we multiply in the discount once
- Why discount?
- Reward now is better than later
- Can also think of it as a 1-gamma chance of ending the process at every step
- Also helps our algorithms converge
- Example: discount of 0.5
- $U([1,2,3])=1 * 1+0.5^{*} 2+0.25^{*} 3$
- $U([1,2,3])<U([3,2,1])$

Quiz: Discounting

- Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma=1$, what is the optimal policy?

- Quiz 2: For $\gamma=0.1$, what is the optimal policy?

10	$<-$	$<-$	\rightarrow	1

- Quiz 3: For which γ are West and East equally good when in state d?

$$
1 \gamma=10 \gamma^{3}
$$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
- Finite horizon: (similar to depth-limited search)
- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)

- Discounting with γ solves the problem of infinite reward streams!
- Geometric series: $1+\gamma+\gamma^{2}+\ldots=1 /(1-\gamma)$
- Assume rewards bounded by $\pm R_{\max }$
- Then $r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\ldots$ is bounded by $\pm R_{\max } /(1-\gamma)$
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

