
CS 188: Artificial Intelligence
Decision Networks + VPI

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted Stuart Russell and Dawn Song)

Decision Networks

Weather

Forecast

Umbrella

U

§ Decision network = Bayes net + Actions + Utilities
§ Chance nodes (just like BNs)

§ Action nodes (rectangles, cannot have parents, will have
value fixed by algorithm)

§ Utility nodes (diamond, depends on action and chance
nodes)

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Bayes net inference!

Maximum Expected Utility

Weather

Umbrella

U

W P(W)
sun 0.7
rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)
leave sun 100
leave rain 0
take sun 20
take rain 70

U

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility of action a: åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Example: Take an umbrella?

Weather

Forecast
=bad

Umbrella

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take!

W P(W)

sun 0.7

W P(F=bad|W)

sun 0.17

rain 0.77

EU(leave|F=bad) = åw P(w|F=bad) U(leave,w)

= 0.34x100 + 0.66x0 = 34

EU(take|F=bad) = åw P(w|F=bad) U(take,w)

= 0.34x20 + 0.66x70 = 53

Bayes net inference!

U

§ Decision algorithm:
§ Fix evidence e
§ For each possible action a

§ Fix action node to a
§ Compute posterior P(W|e,a) for parents W of U
§ Compute expected utility of action a: åw P(w|e,a) U(a,w)

§ Return action with highest expected utility

Example: Take an umbrella?

Weather

Forecast
=bad

Umbrella

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=good)

sun 0.89

rain 0.11

Umbrella = leave

Umbrella = take

Optimal decision = leave!

W P(W)

sun 0.7

W P(F=good|W)

sun 0.83

rain 0.23

EU(leave|F=good) = åw P(w|F=good) U(leave,w)

= 0.89x100 + 0.11x0 = 89

EU(take|F=good) = åw P(w|F=good) U(take,w)

= 0.89x20 + 0.11x70 = 26

Bayes net inference!

Value of Information

A question to motivate VPI

How do you tell if you want to take a specific class next semester?

Value of Perfect Information

§ Idea: compute value of acquiring evidence
§ Can be done directly from decision network

§ Example: buying oil drilling rights
§ Two blocks A and B, exactly one has oil, worth k
§ You can drill in one location
§ Prior probabilities 0.5 each, & mutually exclusive
§ Drilling in either A or B has EU = k/2, MEU = k/2

§ Question: what’s the value of information of O?
§ Value of knowing which of A or B has oil
§ Value is expected gain in MEU from new info
§ If we know OilLoc, MEU is k (either way)
§ Gain in MEU from knowing OilLoc?
§ VPI(OilLoc) = k – k/2 = k/2
§ Fair price of information: k/2

OilLoc

DrillLoc
U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2

Value of information
§ Before you see the forecast (no evidence)

§ MEU(ø) = maxaEU(a) = 70

§ What if you look at the forecast?
§ If Forecast=bad

§ MEU(F=bad) = maxaEU(a | F=bad) = 53

§ If Forecast=good
§ MEU(F=good) = maxaEU(a | F=good) = 89

§ But, we don’t know what the forecast will be
ahead of time!

§ So we need a distribution of P(F)
§ Expected utility given forecast

§ = 0.35 x 53 + 0.65 x 89 = 76.4

§ Value of information = 76.4-70 = 6.4

Weather

bad

Umbrella

U

Weather

good

Umbrella

U

Weather

Forecast

Umbrella

U

leave take
34 53

leave take

70 35

leave take
89 25

observe F

0.350.65

Bayes net inference!

F P(F)

good 0.65

bad 0.35

Value of Information
§ Assume we have evidence E=e. Value if we act now:

§ Assume we see that E’ = e’. Value if we act then:

§ BUT E’ is a random variable whose value is
unknown, so we don’t know what e’ will be

§ Expected value if E’ is revealed and then we act:

§ Value of information: how much MEU goes up
by revealing E’ first then acting, over acting now:

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)
U

{+e}
P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a

Value of Information

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)
U

{+e}
P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a

=
X

e0

P (e0|e)max
a

X

s

P (s|e, e0)U(s, a)
<latexit sha1_base64="zCWzkavAye+jYEqeXezI3ypFu+E=">AAACF3icbVDLSgNBEJz1GeMr6tHLYJAkEMJuFPQiiF48RjBGSMLSO+kkgzO7y8ysGNb8hRd/xYsHRbzqzb9x8jj4Kmgoqrrp7gpiwbVx3U9nZnZufmExs5RdXlldW89tbF7qKFEM6ywSkboKQKPgIdYNNwKvYoUgA4GN4Pp05DduUGkehRdmEGNbQi/kXc7AWMnPVY5aOpF+ioVhrYiFOyy1JNz6QMeyprWivsMyFkr1oi5Dyc/l3Yo7Bv1LvCnJkylqfu6j1YlYIjE0TIDWTc+NTTsFZTgTOMy2Eo0xsGvoYdPSECTqdjr+a0h3rdKh3UjZCg0dq98nUpBaD2RgOyWYvv7tjcT/vGZiuoftlIdxYjBkk0XdRFAT0VFItMMVMiMGlgBT3N5KWR8UMGOjzNoQvN8v/yWX1Yq3V6me7+ePT6ZxZMg22SFF4pEDckzOSI3UCSP35JE8kxfnwXlyXp23SeuMM53ZIj/gvH8B3nGd0g==</latexit>

= max
a

X

e0

P (e|e0)
X

s

P (s|e, e0)U(s, a)
<latexit sha1_base64="eDqwJnVpTz3mTAXpTEhXmvG7lic=">AAACF3icbVBNSwMxEM36WetX1aOXYBErSNmtgl4E0YvHCrYW2rLMptM2mOwuSVYsa/+FF/+KFw+KeNWb/8b046CtDwJv3pthMi+IBdfGdb+dmdm5+YXFzFJ2eWV1bT23sVnVUaIYVlgkIlULQKPgIVYMNwJrsUKQgcCb4PZi4N/codI8Cq9NL8amhE7I25yBsZKfK542JNz7QBs6kX6Ke/1yAR9wb39Ya1ou6Ac8sHWloA9g38/l3aI7BJ0m3pjkyRhlP/fVaEUskRgaJkDruufGppmCMpwJ7GcbicYY2C10sG5pCBJ1Mx3e1ae7VmnRdqTsCw0dqr8nUpBa92RgOyWYrp70BuJ/Xj0x7ZNmysM4MRiy0aJ2IqiJ6CAk2uIKmRE9S4Apbv9KWRcUMGOjzNoQvMmTp0m1VPQOi6Wro/zZ+TiODNkmO6RAPHJMzsglKZMKYeSRPJNX8uY8OS/Ou/Mxap1xxjNb5A+czx/ftp3S</latexit>

= max
a

X

e0

X

s

P (s, e0|e)U(s, a)
<latexit sha1_base64="WWjXHj1qgFq7XCzRsTi8xjuTZm8=">AAACEHicbZA9SwNBEIb34leMX6eWNotBYkDCXRS0EYI2lhGMCkk45jYTXbJ7d+zuieHMT7Dxr9hYKGJraee/cRNTqPGFhYd3ZpidN0wE18bzPp3c1PTM7Fx+vrCwuLS84q6unes4VQwbLBaxugxBo+ARNgw3Ai8ThSBDgRdh73hYv7hBpXkcnZl+gm0JVxHvcgbGWoFbOmxJuA2AtnQqgwxLgxFoWt/WO1i6w3LDApQDt+hVvJHoJPhjKJKx6oH70erELJUYGSZA66bvJaadgTKcCRwUWqnGBFgPrrBpMQKJup2NDhrQLet0aDdW9kWGjtyfExlIrfsytJ0SzLX+Wxua/9WaqeketDMeJanBiH0v6qaCmpgO06EdrpAZ0bcATHH7V8quQQEzNsOCDcH/e/IknFcr/m6lerpXrB2N48iTDbJJtolP9kmNnJA6aRBG7skjeSYvzoPz5Lw6b9+tOWc8s05+yXn/Aluim34=</latexit>

VPI Properties

VPI is non-negative! VPI(Ei | e) ³ 0

VPI is not (usually) additive: VPI(Ei , Ej | e) ¹ VPI(Ei | e) + VPI(Ej | e)

VPI is order-independent: VPI(Ei , Ej | e) = VPI(Ej , Ei | e)

Quick VPI Questions

§ The soup of the day is either clam chowder or split
pea, but you wouldn’t order either one. What’s
the value of knowing which it is?

§ There are two kinds of plastic forks at a picnic.
One kind is slightly sturdier. What’s the value of
knowing which?

§ You’re playing the lottery. The prize will be $0 or
$100. You can play any number between 1 and
100 (chance of winning is 1%). What is the value
of knowing the winning number?

Value of Imperfect Information?

§ No such thing

§ Information corresponds to the
observation of a node in the
decision network

§ If data is “noisy” that just means we
don’t observe the original variable,
but another variable which is a noisy
version of the original one

VPI Question

§ VPI(OilLoc) ?

§ VPI(ScoutingReport) ?

§ VPI(Scout) ?

§ VPI(Scout | ScoutingReport) ?

§ Generally:
If Parents(U) Z | CurrentEvidence)
Then VPI(Z | CurrentEvidence) = 0

OilLoc

DrillLoc

U

Scouting
Report

Scout

Decisions with unknown preferences

§ In reality the assumption that we can write down our exact
preferences for the machine to optimize is false

§ A machine optimizing the wrong preferences causes problems

Decisions with unknown preferences

§ In reality the assumption that we can write down our exact
preferences for the machine to optimize is false

§ A machine optimizing the wrong preferences causes problems
§ A machine that is explicitly uncertain about the human’s

preferences will defer to the human (e.g., allow itself to be
switched off)

Off-switch problem (example)

18

R

H

switch robot off

switch self offact

U = ? U=0

go ahead

wait

U=0

-40 0 +60

R

act

U = ?
-40 0 +60

switch self off

U=0

wait

U

U

P(U)

P(U)

EU(act) = +10

EU(wait) = (0.4 * 0) + (0.6 * 30)
= +18

Off-switch problem (general proof)

§ !" #$% = ∫()
*)+ , . , ., = ∫()

/ + , . , ., + ∫/
*)+ , . , .,

§ !" 1#2% = ∫()
/ + , . 0 ., + ∫/

*)+ , . , .,
§ Obviously ∫()

/ + , . , ., ≤ ∫()
/ + , . 0 .,

§ Hence !" #$% ≤ !" 1#2%
§ “If H doesn’t switch me off, then the action must be good for H, and I’ll get

to do it, so that’s good; if H does switch me off, then it’s because the action
must be bad for H, so it’s good that I won’t be allowed to do it.”

19

CS 188: Artificial Intelligence
Markov Decision Processes

Instructor: Angela Liu and Yanlai Yang

University of California, Berkeley
[These slides adapted from Dan Klein and Pieter Abbeel]

Sequential decisions under uncertainty

So far, decision problem is one-shot --- concerning only one action

Sequential decision problem: agent’s utility depends on a sequence of actions

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward r each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Markov Decision Process (MDP)

§ Environment history: [s0, a0, s1, a1, …, st]

§ “Markov” generally means that given the present state, the
future and the past are independent

§ For Markov decision processes, “Markov” means action
outcomes depend only on the current state

§ This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Markov Decision Process (MDP)

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition model T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ A reward function R(s, a, s’) for each transition
§ A start state
§ Possibly a terminal state (or absorbing state)
§ Utility function which is additive (discounted) rewards

§ MDPs are fully observable but probabilistic search problems

[Demo – gridworld manual intro (L8D1)]

Grid World Actions
Deterministic Grid World Stochastic Grid World

Policies

§ A policy p gives an action for each state, p: S → A

§ In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ An optimal policy maximizes expected utility
§ An explicit policy defines a reflex agent

Optimal policy for r>0

r > 0

Optimal policy for r>0

r > 0

Sample Optimal Policies

Example: Racing

Example: Racing

§ A robot car wants to travel far, quickly

§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees

§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

§ What preferences should an agent have over reward sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

§ Discounting with γ conveniently solves the problem of infinite reward streams!
§ Geometric series: 1 + γ + γ2 + … = 1/(1 - γ)
§ Assume rewards bounded by ± Rmax

§ Then r0 + γr1 + γ2r2 + … is bounded by ± Rmax/(1 - γ)
§ (Another solution: environment contains a terminal state; and agent reaches it with

probability 1)

Worth r now Worth γr next step Worth γ2r in two steps

Discounting

§ How to discount?
§ Each time we descend a level, we

multiply in the discount once

§ Why discount?
§ Reward now is better than later

§ Can also think of it as a 1-gamma
chance of ending the process at every
step

§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

§ U([1,2,3]) < U([3,2,1])

Quiz: Discounting

§ Given:

§ Actions: East, West, and Exit (only available in exit states a, e)
§ Transitions: deterministic

§ Quiz 1: For g = 1, what is the optimal policy?

§ Quiz 2: For g = 0.1, what is the optimal policy?

§ Quiz 3: For which g are West and East equally good when in state d?

<- <- <-

<- <- ->

1g=10 g3

Infinite Utilities?!

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting with γ solves the problem of infinite reward streams!
§ Geometric series: 1 + γ + γ2 + … = 1/(1 - γ)
§ Assume rewards bounded by ± Rmax

§ Then r0 + γr1 + γ2r2 + … is bounded by ± Rmax/(1 - γ)

§ Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

