CS 188: Artificial Intelligence

Markov Decision Processes

Instructor: Angela Liu and Yanlai Yang

University of California, Berkeley
[These slides adapted from Dan Klein and Pieter Abbeel]

Markov Decision Process (MDP)

= An MDP is defined by:

= Asetofstatesse S
= AsetofactionsaeA
= A transition model T(s, a, s’)
= Probability that a from s leads to s’, i.e., P(s’| s, a)
= A reward function R(s, g, s’) for each transition
= A start state
= Possibly a terminal state (or absorbing state)
= Utility function which is additive (discounted) rewards

= MDPs are fully observable but probabilistic search problems

[Demo — gridworld manual intro (L8D1)]

Policies

= A policy t gives an action for each state, m1: S 2> A

= |n deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

= For MDPs, we want an optimal policy t*:S > A
= An optimal policy maximizes expected utility
= An explicit policy defines a reflex agent

Sample Optimal Policies

el el - -
) = (=] s b |
3 —- - -
r< —1.6497 —0.7311 < r < —0.4526
2 | A = |
“[-[=[= [F[+=]=
1 ‘ - 4 - ‘
: -(= [+ ==
R V=[=1v] [F]+[+]
—0.0274 < r <0 r=10
(a) (b)
Figure 17.2 (a) The optimal policies for the stochastic environment with 7= — (.04 for

transitions between nonterminal states. There are two policies because 1n state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of .

Example: Racing

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated

= Two actions: Slow, Fast
0.5

= Going faster gets double reward

Slow

Overheated

1.0

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s") called a transition
T(s,a,s") =P(s’ | s,a)
R(s,a,s”)

Utilities of Sequences

Utilities of Sequences

= What preferences should an agent have over reward sequences?

= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, 0O, 1] or [1,0,0]

8
S

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

v @

L g v

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?
= Reward now is better than later

= Can also think of it as a 1-gamma
chance of ending the process at every

step
= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5%2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Given:

Quiz: Discounting

10

1

da

b

C

d

e

= Actions: East, West, and Exit (only available in exit states a, €)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy?
Quiz 2: For y=0.1, what is the optimal policy?

Quiz 3: For which y are West and East equally good when in state d?

1y=10 73

10

10

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

" Discounting with y solves the problem of infinite reward streams!
» Geometric series: 1+y+y2+...=1/(1-y)
= Assume rewards bounded by £ R, .,
* Thenry+yr,+v?r,+.. isbounded by £ R_../(1-vV)

" Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
* Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount v) 7 8as

" MDP quantities so far:

= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Recall: Racing MDP

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated

= Two actions: Slow, Fast
0.5

= Going faster gets double reward

Slow

Overheated

1.0

Racing Search Tree

Racing Search Tree

mm.

AnAnANAD

N

|

L

|

!

L

L

NN

LIEETUI TR L

L

LIEImEL]

LIEETRTHEU TR L

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited

computation, but with increasing
depths until change is small Hﬁﬂ ﬂﬁﬁﬂﬁ Hﬁﬂ Hﬁﬂ
= Note: deep parts of the tree

eventually don’t matterify<1 THITRITT L TR TRLLL THTIRLLL

Optimal Quantities

= The value (utility) of a state s:

V(s) = expected utility starting in s
and acting optimally

Sis a
state

(s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q (S a) = exl];()ected utility starting out N
havin en action a from state s Sﬂi:lt)l;ia

and (thereafter) acting optimally

= The optimal policy:
 (s) = optimal action from state s

The Bellman Equations

How to be optimal: ’

Step 1: Take correct first action

eep being optimal

Values of States

m Recursive definition of value:

V*(s) = max Q7(s,a)

a

Q*(s,a) = T(s,0,5)[R(s,8,5')+ 7 V*()] N

s
»

V*(s) = mfoT(s, a,s')[R(s,a,s") +yV*(s')]

Gridworld V* Values

Cridworld Display

0.64 »| 0.74)

Noise = 0.2
Discount = 0.9
Living reward = 0

Gridworld Q* Values

s =

2P

Discount = 0.9
Living reward = 0

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

S Vo(@)

T

TR TR AT

[Demo — time-limited values (L8D4)]

VALUES AFTER O ITERATIONS Noise = 0.2

Discount = 0.9
Living reward = 0

n

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 2 ITERATIONS Npise =0.2
Discount = 0.9

Living reward = 0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

e

VALUES AFTER 4 ITERATIONS Npise =0.2
Discount = 0.9

Living reward = 0

.H

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=8

Gridworld Display

VALUES AFTER 8 ITERATIONS Npise =0.2
Discount = 0.9

Living reward = 0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Npise =0.2
Discount = 0.9

Living reward = 0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

Computing Time-Limited Values

NN N RN N N
VT O O Y O VT | O O Y | VO O |

|I|lll|l Il.l |‘||l| |.III- |I|lll|l . |I|lll|l I IIIIl - |I|lll|l l |.III

ORI CUORMEPRARE FHEAT CHATEIE LT TR

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence, which yields V* _-7sas

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value Iteration

= Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + ny*(s/)}

S

= Value iteration computes them:

Viet1(s) <+ mC?XZT(s, a,s) {R(s, a,s’) + nyk(s/)}

S

Value Iteration (again ©) AS

" |nit: L D
S, a
Vs: V(s)=0
_-78,a,8 .
= |[terate: A s

Vs: V.., (s) = mC?XZ T(s,a,s")[R(s,a,s") +yV(s')]

V = View

Note: can even directly assign to V(s), which will not compute the sequence of V; but will still converge to V*

Example: Value Iteration

S:]‘ . ' O-v'erheated 4
Vi g 5%245%-2

Assume no discount!

Yo [0 0 0] Vig1(s) <= max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

v 2 S: .5*1+.5*1:1 | o ' (;v'erheated 4
! F:-10

Assume no discount!

v [0 0 0] Vig1(s) <= max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Overheated

Assume no discount!

Yo [0 0 0] Vig1(s) <= max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Overheated

Assume no discount!

Yo [0 0 0] Vig1(s) <= max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Example: Value Iteration

Overheated

Assume no discount!

Yo [0 0 0] Vig1(s) <= max Y T(s,a,s") |R(s,a,5") + 7 V(s

S

Convergence®

* How do we know the V, vectors are going to converge?
[<y<l1
(assuming0<y<1) Vk(S) Vk_|_1(8)

= Proof Sketch:

= For any state V| and V,,; can be viewed as depth k+1
expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,; has actual
rewards while V| has zeros

= That last layer is at best all Ryjax
= |tis at worst Ry
= But everything is discounted by yk that far out

= SoV,and V,,; are at most y* max|R| different / \ /

= So as kincreases, the values converge

Policy Extraction

|

Computing Actions from Values

= Let’s imagine we have the optimal values V*(s) n
- 4 . 4 -
* How should we act? -
4 . =1L -
= |t’s not obvious!
.. . 0.92 |« 0.91 0.80
= We need to do a mini-expectimax (one step) :

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

qb:: ei:\agine we have the optimal ij
= How should we act? M-

= Completely trivial to decide!

" (s) = argmaxQ*(s,a) %

" |mportant lesson: actions are easier to select from g-values than values!

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + ’ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

" Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

