
CS 188: Artificial Intelligence
Markov Decision Processes

Instructor: Angela Liu and Yanlai Yang

University of California, Berkeley
[These slides adapted from Dan Klein and Pieter Abbeel]

Markov Decision Process (MDP)

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition model T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ A reward function R(s, a, s’) for each transition
§ A start state
§ Possibly a terminal state (or absorbing state)
§ Utility function which is additive (discounted) rewards

§ MDPs are fully observable but probabilistic search problems

[Demo – gridworld manual intro (L8D1)]

Policies

§ A policy p gives an action for each state, p: S → A

§ In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ An optimal policy maximizes expected utility
§ An explicit policy defines a reflex agent

Sample Optimal Policies

Example: Racing

Example: Racing

§ A robot car wants to travel far, quickly

§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees

§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

§ What preferences should an agent have over reward sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

§ How to discount?
§ Each time we descend a level, we

multiply in the discount once

§ Why discount?
§ Reward now is better than later

§ Can also think of it as a 1-gamma
chance of ending the process at every
step

§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

§ U([1,2,3]) < U([3,2,1])

Quiz: Discounting

§ Given:

§ Actions: East, West, and Exit (only available in exit states a, e)
§ Transitions: deterministic

§ Quiz 1: For g = 1, what is the optimal policy?

§ Quiz 2: For g = 0.1, what is the optimal policy?

§ Quiz 3: For which g are West and East equally good when in state d?

<- <- <-

<- <- ->

1g=10 g3

Infinite Utilities?!

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting with γ solves the problem of infinite reward streams!
§ Geometric series: 1 + γ + γ2 + … = 1/(1 - γ)
§ Assume rewards bounded by ± Rmax

§ Then r0 + γr1 + γ2r2 + … is bounded by ± Rmax/(1 - γ)

§ Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

Recap: Defining MDPs

§ Markov decision processes:
§ Set of states S
§ Start state s0

§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Recall: Racing MDP

§ A robot car wants to travel far, quickly

§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

Racing Search Tree

Racing Search Tree

§ We’re doing way too much
work with expectimax!

§ Problem: States are repeated
§ Idea: Only compute needed

quantities once

§ Problem: Tree goes on forever
§ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

§ Note: deep parts of the tree
eventually don’t matter if γ < 1

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s

and acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s
and (thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

Values of States

§ Recursive definition of value:

a

s

s, a

s,a,s’
s’

V⇤(s) = Q⇤(s, a)max
a

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Gridworld V* Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Gridworld Q* Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Time-Limited Values

§ Key idea: time-limited values

§ Define Vk(s) to be the optimal value of s if the game ends
in k more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D4)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence, which yields V*

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

Value Iteration

§ Bellman equations characterize the optimal values:

§ Value iteration computes them:

a

V(s)

s, a

s,a,s’

V(s’)

Value Iteration (again J)
§ Init:

§ Iterate:

a

s

s, a

s,a,s’
s’

∀": $ " = 0

∀": $'() " = max
-
.
/0
1 ", 3, "0 [5 ", 3, "0 + 7$ "0]

$ = $'()
Note: can even directly assign to V(s), which will not compute the sequence of Vk but will still converge to V*

Example: Value Iteration

0 0 0

S: 1

Assume no discount!

F: .5*2+.5*2=2

Example: Value Iteration

0 0 0

2

Assume no discount!

S: .5*1+.5*1=1
F: -10

Example: Value Iteration

0 0 0

2

Assume no discount!

1 0

Example: Value Iteration

0 0 0

2

Assume no discount!

1 0

S: 1+2=3
F: .5*(2+2)+.5*(2+1)=3.5

Example: Value Iteration

0 0 0

2

Assume no discount!

1 0

3.5 2.5 0

Convergence*

§ How do we know the Vk vectors are going to converge?
(assuming 0 < γ < 1)

§ Proof Sketch:
§ For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

Policy Extraction

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

§ Let’s imagine we have the optimal
q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

