CS 188: Artificial Intelligence

Markov Decision Processes

Instructor: Angela Liu and Yanlai Yang

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Markov Decision Process (MDP)

- An MDP is defined by:
 - A set of states *s* ∈ *S*
 - A set of actions $a \in A$
 - A transition model T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - A reward function *R*(*s*, *a*, *s'*) for each transition
 - A start state
 - Possibly a terminal state (or absorbing state)
 - Utility function which is additive (discounted) rewards
- $\begin{array}{c} 3 \\ 2 \\ 1 \\ \hline \\ 2 \\ \hline \\ 1 \\ \hline \\ 2 \\ \hline \\ 3 \\ \hline \\ 3 \\ \hline \\ 4 \\ \hline \end{array}$
- MDPs are fully observable but probabilistic search problems

[Demo – gridworld manual intro (L8D1)]

Policies

- A policy π gives an action for each state, $\pi: S \rightarrow A$
- In deterministic single-agent search problems, we wanted an optimal *plan*, or sequence of actions, from start to a goal
- For MDPs, we want an optimal **policy** $\pi^*: S \rightarrow A$
 - An optimal policy maximizes expected utility
 - An explicit policy defines a reflex agent

Sample Optimal Policies

Figure 17.2 (a) The optimal policies for the stochastic environment with r = -0.04 for transitions between nonterminal states. There are two policies because in state (3,1) both *Left* and *Up* are optimal. (b) Optimal policies for four different ranges of r.

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast

MDP Search Trees

Utilities of Sequences

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Reward now is better than later
 - Can also think of it as a 1-gamma chance of ending the process at every step
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])</p>

Quiz: Discounting

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?

• Quiz 3: For which γ are West and East equally good when in state d? $1\gamma=10 \gamma^3$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)

- Discounting with γ solves the problem of infinite reward streams!
 - Geometric series: $1 + \gamma + \gamma^2 + ... = 1/(1 \gamma)$
 - Assume rewards bounded by $\pm R_{max}$
 - Then $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$ is bounded by $\pm R_{\text{max}}/(1 \gamma)$
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Recall: Racing MDP

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Optimal Quantities

- The value (utility) of a state s: V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s

The Bellman Equations

Values of States

Recursive definition of value:

s'

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

Gridworld V* Values

000	Gridworl	d Display	
0.64 →	0.74 →	0.85 →	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28

Gridworld Q* Values

Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

[Demo – time-limited values (L8D4)]

0	Gridworl	d Display	
0.00	0.00	0.00	0.00
		^	
0.00		0.00	0.00
^		^	^
0.00	0.00	0.00	0.00

0 0	Gridwor	d Display	
0.00	0.00	0.00 →	1.00
0.00		∢ 0.00	-1.00
		^	
0.00	0.00	0.00	0.00
			-
VALUES AFTER 1 ITERATIONS			

0	○ ○ Gridworld Display			
	0.00	0.00 →	0.72 →	1.00
	0.00		0.00	-1.00
		^		
	0.00	0.00	0.00	0.00
				-
	VALUES AFTER 2 ITERATIONS			

k=3

0	0	Gridworl	d Display	
	0.00)	0.52)	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUES AFTER 3 ITERATIONS			

k=4

0 0	Gridworl	d Display		
0.37 ▸	0.66)	0.83)	1.00	
•		• 0.51	-1.00	
•	0.00 →	• 0.31	∢ 0.00	
VALUE	VALUES AFTER 4 ITERATIONS			

00	Gridworld Display			
	0.51 →	0.72 →	0.84 →	1.00
	• 0.27		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
	VALUES AFTER 5 ITERATIONS			

000		Gridworl	d Display	
	0.59)	0.73 ▶	0.85)	1.00
	• 0.41		• 0.57	-1.00
	•	0.31 →	• 0.43	∢ 0.19
	VALUES AFTER 6 ITERATIONS			

00	Gridworl	d Display	-
0.62)	0.74 ▸	0.85)	1.00
• 0.50		• 0.57	-1.00
• 0.34	0.36)	• 0.45	∢ 0.24
VALUE	S AFTER	7 ITERA	FIONS

0 0	Gridworl	d Display	
0.63)	0.74)	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39 →	• 0.46	∢ 0.26
VALUE	S AFTER	8 ITERA	FIONS

Cridworld Display				
0.64)	0.74 →	0.85)	1.00	
• 0.55		• 0.57	-1.00	
• 0.46	0.40 →	• 0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS				

0 0	Gridworl	d Display	
0.64)	0.74 →	0.85)	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.41	• 0.47	◀ 0.27
VALUES AFTER 10 ITERATIONS			

Gridworld Display				
	0.64)	0.74 →	0.85)	1.00
	• 0.56		• 0.57	-1.00
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27
	VALUES AFTER 11 ITERATIONS			

○ ○ Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUES AFTER 12 ITERATIONS				

○ ○ Gridworld Display			
0.64)	0.74 →	0.85)	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Computing Time-Limited Values

Value Iteration

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence, which yields V*
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$\forall s: \ V_{new}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$$

$$V = V_{new}$$

Note: can even directly assign to V(s), which will not compute the sequence of V_k but will still converge to V^*

Convergence*

- How do we know the V_k vectors are going to converge? (assuming 0 < γ < 1)
- Proof Sketch:
 - For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ♪	0.96 ♪	0.98 ♪	1.00
• 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

 $\pi^*(s) = \arg\max_a Q^*(s,a)$

Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration

- s, a s, a s, a, s'
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

0 0	Gridworld Display				
	0.64)	0.74	0.85 →	1.00	
	0.57		0.57	-1.00	
	• 0.49	◀ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

C Cridworld Display			
0.64 →	0.74 →	0.85)	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	• 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			