CS 188: Artificial Intelligence

Markov Decision Processes II

Instructor: Angela Liu and Yanlai Yang

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Values of States

Recursive definition of value:

s'

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence, which yields V*
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

0 0	Gridworl	d Display		
0.00	0.00	0.00	0.00	
		_		
0.00		0.00	0.00	
•	•	•		
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

0 0	0	Gridworl	d Display	
Í	•	^		
	0.00	0.00	0.00 →	1.00
	•			
	0.00		∢ 0.00	-1.00
	•	•	•	
	0.00	0.00	0.00	0.00
				•
	VALUE	S AFTER	1 ITERA	FIONS

0 0	0	Gridworl	d Display		
	• 0.00	0.00)	0.72 ▸	1.00	
	•		•	-1.00	
	•	• 0.00	• 0.00	0.00	
	VALUES AFTER 2 ITERATIONS				

k=3

0	0	Gridworl	d Display		
	0.00)	0.52 →	0.78 →	1.00	
	• 0.00		• 0.43	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

00	0	Gridworl	d Display	-
	0.37 ▶	0.66)	0.83)	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

00	0	Gridworl	d Display		
	0.51)	0.72 →	0.84)	1.00	
	• 0.27		• 0.55	-1.00	
	• 0.00	0.22 →	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

0 0	0	Gridworl	d Display	-	
	0.59 →	0.73 →	0.85)	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31 →	• 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

0 0	0	Gridworl	d Display	-
	0.62)	0.74 ▸	0.85)	1.00
	^		^	
	0.50		0.57	-1.00
	•		•	
	0.34	0.36 →	0.45	∢ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

0 0	0	Gridworl	d Display	
	0.63)	0.74)	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

000		Gridworld	d Display	
0.6	4 ▶	0.74 →	0.85)	1.00
0.5	55		• 0.57	-1.00
• 0.4	6	0.40 →	• 0.47	∢ 0.27
V	ALUE	S AFTER	9 ITERA	FIONS

00	0	Gridworl	d Display		
	0.64)	0.74 →	0.85 →	1.00	
	• 0.56		• 0.57	-1.00	
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
	VALUES AFTER 10 ITERATIONS				

00	0	Gridworl	d Display	-
	0.64 →	0.74 →	0.85)	1.00
	• 0.56		• 0.57	-1.00
	• 0.48	∢ 0.42	• 0.47	◀ 0.27
	VALUE	S AFTER	11 ITERA	TIONS

00	○ ○ ○ Gridworld Display				
	0.64 ♪	0.74)	0.85)	1.00	
	▲ 0.57		• 0.57	-1.00	
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

00	Gridworld Display			
	0.64)	0.74 →	0.85 →	1.00
	• 0.57		• 0.57	-1.00
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ♪	0.96 ኑ	0.98 ▶	1.00
▲ 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

 $\pi^*(s) = \arg\max_a Q^*(s,a)$

Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration

- s, a s, a s, a, s'
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

00	○ ○ ○ Gridworld Display				
	0.64 →	0.74)	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

0 0	Gridworld Display			
	0.64 →	0.74 →	0.85)	1.00
	• 0.57		▲ 0.57	-1.00
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

Policy Methods

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy Improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is Policy Iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Example: Policy Evaluation

Example: Policy Evaluation

	9	0
-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Right

Always Go Forward

-10.00	100.00	-10.00
-10.00	▲ 70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	▲ 33.30	-10.00

Policy Iteration

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy Evaluation:

 $V^{\pi_0}(B) = 1 + 0.9 \cdot V^{\pi_0}(B) \longrightarrow V^{\pi_0}(B) = 10$ $V^{\pi_0}(W) = -10 + 0.9 \cdot V^{\pi_0}(O) \longrightarrow V^{\pi_0}(W) = -10$ $V^{\pi_0}(O) = 0$

Policy Improvement:

$$\pi_1 \left\{ \begin{array}{l} S: \ 1+0.9 \cdot 10 = 10 \\ F: \ 0.5(2+0.9 \cdot 10) + 0.5(2+0.9 \cdot -10) = 0 \end{array} \right.$$

Assume discount = 0.9

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$

Policy Evaluation:

 $V^{\pi_0}(B) = 1 + 0.9 \cdot V^{\pi_0}(B) \longrightarrow V^{\pi_0}(B) = 10$ $V^{\pi_0}(W) = -10 + 0.9 \cdot V^{\pi_0}(O) \longrightarrow V^{\pi_0}(W) = -10$ $V^{\pi_0}(O) = 0$

Assume discount = 0.9

Example: Value Iteration

Convergence*

Proof Sketch

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$

- Monotonic improvement: $\forall s V^{\pi_{i+1}}(s) \ge V^{\pi_i}(s)$
- Termination: π_i is optimal if $\forall s \ \pi_i(s) = \pi_{i+1}(s)$
 - $\pi_{i+1}(s)$ chooses the best action to take under $V^{\pi_i}(s)$
 - If $\forall s \ \pi_i(s) = \pi_{i+1}(s)$, then $\pi_i(s)$ was already the best action for all states
- Guaranteed termination: only finite number of policies

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
 - Runtime per iteration: $O(|S|^2|A|)$
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - Runtime per value iteration update: $O(|S|^2) \rightarrow$ total runtime to get fixed policy values: $O(|S|^3)$
 - After policy is evaluated, a new policy is chosen (slow like a value iteration pass $\rightarrow O(|S|^2|A|)$)
 - The new policy will be better (or we're done)
 - Runtime per iteration: $O(|S|^3) + O(|S|^2|A|) \rightarrow$ slower but can take much fewer iterations
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions