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Values of States

§ Recursive definition of value:
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Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence, which yields V*

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do
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Policy Extraction



Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

§ Let’s imagine we have the optimal
q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!



Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “max” at each state rarely changes

§ Problem 3: The policy often converges long before the values
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Policy Methods



Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence
§ Step 2: Policy Improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is Policy Iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions



Policy Evaluation



Fixed Policies

§ Expectimax trees max over all actions to compute the optimal values

§ If we fixed some policy p(s), then the tree would be simpler – only one action per state
§ … though the tree’s value would depend on which policy we fixed
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Utilities for a Fixed Policy

§ Another basic operation: compute the utility of a state s 
under a fixed (generally non-optimal) policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ Recursive relation (one-step look-ahead / Bellman equation):
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Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)
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Example: Policy Evaluation
Always Go Right Always Go Forward



Example: Policy Evaluation
Always Go Right Always Go Forward



Policy Iteration



Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:



Example: Policy Iteration

!" # $ ∅

Policy Evaluation:
&'( ) = 1 + 0.9 ⋅ &'(())
&'( 3 = −10 + 0.9 ⋅ &'((5)
&'( 5 = 0

→ &'( ) = 10
→ &'( 3 = −10

Policy Improvement:

!7
#: 1 + 0.9 ⋅ 10 = 10
$: 0.5 2 + 0.9 ⋅ 10 + 0.5 2 + 0.9 ⋅ −10 = 0

Assume discount = 0.9



Example: Policy Iteration
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Example: Policy Iteration
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Example: Policy Iteration
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Example: Policy Iteration
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Policy Improvement:
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Example: Policy Iteration
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Policy Improvement:
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Example: Value Iteration
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Convergence*

§ Proof Sketch

§ Monotonic improvement: ∀" #$%&' " ≥ #$% "
§ Termination: )* is optimal if ∀" )* " = )*,- "

§ )*,- " chooses the best action to take under #$% "
§ If ∀" )* " = )*,- " , then )* " was already the best action for all states

§ Guaranteed termination: only finite number of policies



Comparison
§ Both value iteration and policy iteration compute the same thing (all optimal values)

§ In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it
§ Runtime per iteration: ! " # $

§ In policy iteration:
§ We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
§ Runtime per value iteration update: ! " # à total runtime to get fixed policy values: ! " %

§ After policy is evaluated, a new policy is chosen (slow like a value iteration pass à ! " # $ )
§ The new policy will be better (or we’re done)
§ Runtime per iteration: ! " % + ! " #|$| à slower but can take much fewer iterations

§ Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

§ These all look the same!
§ They basically are – they are all variations of Bellman updates

§ They all use one-step lookahead expectimax fragments

§ They differ only in whether we plug in a fixed policy or max over actions


