
CS 188: Artificial Intelligence
Markov Decision Processes II

Instructor: Angela Liu and Yanlai Yang

University of California, Berkeley
[These slides adapted from Dan Klein and Pieter Abbeel]

Values of States

§ Recursive definition of value:

a

s

s, a

s,a,s’
s’

V⇤(s) = Q⇤(s, a)max
a

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence, which yields V*

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Extraction

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

§ Let’s imagine we have the optimal
q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Methods

Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
§ Step 2: Policy Improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is Policy Iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

§ Expectimax trees max over all actions to compute the optimal values

§ If we fixed some policy p(s), then the tree would be simpler – only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

§ Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’
s’

Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’

Example: Policy Evaluation
Always Go Right Always Go Forward

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Iteration

Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

Example: Policy Iteration

!" # $ ∅

Policy Evaluation:
&'() = 1 + 0.9 ⋅ &'(())
&'(3 = −10 + 0.9 ⋅ &'((5)
&'(5 = 0

→ &'() = 10
→ &'(3 = −10

Policy Improvement:

!7
#: 1 + 0.9 ⋅ 10 = 10
$: 0.5 2 + 0.9 ⋅ 10 + 0.5 2 + 0.9 ⋅ −10 = 0

Assume discount = 0.9

Example: Policy Iteration

!" # $ ∅

Policy Evaluation:
&'() = 1 + 0.9 ⋅ &'(())
&'(3 = −10 + 0.9 ⋅ &'((5)
&'(5 = 0

→ &'() = 10
→ &'(3 = −10

Policy Improvement:

!7 # #: 0.5 1 + 0.9 ⋅ 10 + 0.5 1 + 0.9 ⋅ −10 = 0
$:−10 + 0.9 ⋅ 0 = −10

Assume discount = 0.9

∅

Example: Policy Iteration

!" # # ∅

Policy Evaluation:
%&' (= 1 + 0.9 ⋅ %&'(()
%&' 2 = 0.5 1 + 0.9 ⋅ %&' (+ 0.5 1 + 0.9 ⋅ %&' 2
%&' 4 = 0

→ %&' (= 10
→ %&' 2 = 10

Policy Improvement:

!6
#: 1 + 0.9 ⋅ 10 = 10
8: 0.5 2 + 0.9 ⋅ 10 + 0.5 2 + 0.9 ⋅ 10 = 11

Assume discount = 0.9

Example: Policy Iteration

!" # # ∅

Policy Evaluation:
%&' (= 1 + 0.9 ⋅ %&'(()
%&' 2 = 0.5 1 + 0.9 ⋅ %&' (+ 0.5 1 + 0.9 ⋅ %&' 2
%&' 4 = 0

→ %&' (= 10
→ %&' 2 = 10

Policy Improvement:

!6

Assume discount = 0.9

7 #: 0.5 1 + 0.9 ⋅ 10 + 0.5 1 + 0.9 ⋅ 10 = 10
7:−10 + 0.9 ⋅ 0 = −10

∅

Example: Policy Iteration

!" # $ ∅

Policy Evaluation:
&'() = 0.5 2 + 0.9 ⋅ &'() + 0.5 2 + 0.9 ⋅ &'(2
&'(2 = 0.5 1 + 0.9 ⋅ &'() + 0.5 1 + 0.9 ⋅ &'(2
&'(4 = 0

→ &'() = 15.5

→ &'(2 = 14.5

Policy Improvement:

!7
$: 1 + 0.9 ⋅ 15.5 = 14.95
#: 0.5 2 + 0.9 ⋅ 15.5 + 0.5 2 + 0.9 ⋅ 14.5 = 15.5

Assume discount = 0.9

Example: Policy Iteration

!" # $ ∅

Policy Evaluation:
&'() = 0.5 2 + 0.9 ⋅ &'() + 0.5 2 + 0.9 ⋅ &'(2
&'(2 = 0.5 1 + 0.9 ⋅ &'() + 0.5 1 + 0.9 ⋅ &'(2
&'(4 = 0

Policy Improvement:

!5

Assume discount = 0.9

$: 0.5 1 + 0.9 ⋅ 15.5 + 0.5 1 + 0.9 ⋅ 14.5 = 14.5
#:−10 + 0.9 ⋅ 0 = −10

$ ∅

→ &'() = 15.5

→ &'(2 = 14.5

Example: Value Iteration

!" 0 0 0

Assume discount = 0.9

!$ 2 1 0

!' 3.35 2.35 0

!+ 4.565 3.565 0

!. 5.6585 4.6585 0 !0$ 15.499 14.499 0…

Convergence*

§ Proof Sketch

§ Monotonic improvement: ∀" #$%&' " ≥ #$% "
§ Termination:)* is optimal if ∀")* " =)*,- "

§)*,- " chooses the best action to take under #$% "
§ If ∀")* " =)*,- " , then)* " was already the best action for all states

§ Guaranteed termination: only finite number of policies

Comparison
§ Both value iteration and policy iteration compute the same thing (all optimal values)

§ In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it
§ Runtime per iteration: ! " # $

§ In policy iteration:
§ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
§ Runtime per value iteration update: ! " # à total runtime to get fixed policy values: ! " %

§ After policy is evaluated, a new policy is chosen (slow like a value iteration pass à ! " # $)
§ The new policy will be better (or we’re done)
§ Runtime per iteration: ! " % + ! " #|$| à slower but can take much fewer iterations

§ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

§ These all look the same!
§ They basically are – they are all variations of Bellman updates

§ They all use one-step lookahead expectimax fragments

§ They differ only in whether we plug in a fixed policy or max over actions

