CS 188: Artificial Intelligence Markov Decision Processes II

Instructor: Angela Liu and Yanlai Yang
University of California, Berkeley

Values of States

- Recursive definition of value:

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Value Iteration

- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$: no time steps left means an expected reward sum of zero
- Given vector of $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ values, do one ply of expectimax from each state:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Repeat until convergence, which yields V^{*}

- Complexity of each iteration: $O\left(S^{2} A\right)$
- Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

$\mathrm{k}=0$

Δ	Δ	Δ	\square
0.00	0.00	0.00	0.00
0.00		0.00	0.00
0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

Δ	Δ		\square
0.00	0.00	0.00	1.00
0.00	40.00	-1.00	
Δ	$\boxed{ }$		
0.00	0.00	0.00	0.00

VALUES AFTER 1 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$$
k=2
$$

VALUES AFTER 2 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$$
\mathrm{k}=3
$$

Gridworld Display

0.00	0.52	0.78	1.00
-		-	
0.00		0.43	-1.00
-	-	-	
0.00	0.00	0.00	0.00
			\checkmark

VALUES AFTER 3 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 4 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$0.51, ~$	0.72,	0.84,	1.00
0.27		0.55	-1.00
0.00	0.22,	0.37	40.13
0			

VALUES AFTER 5 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 6 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 7 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 8 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

0.64	$0.74>$	0.85	1.00
4			
0.55	0.57	-1.00	
0.46	0.40	0.47	40.27

VALUES AFTER 9 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=10$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.56		0.57	-1.00
-		-	
0.48	40.41	0.47	40.27

VALUES AFTER 10 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$$
\mathrm{k}=11
$$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.56		0.57	-1.00
-		-	
0.48	40.42	0.47	40.27

VALUES AFIER 11 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=12$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.57		0.57	-1.00
-		-	
0.49	40.42	0.47	40.28

VALUES AFTER 12 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=100$

$0.64>$	$0.74>$	0.85	1.00
4			
0.57		0.57	-1.00
0.49	0.43	0.48	40.28
0			

VALUES AFTER 100 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
- How should we act?
- It's not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
- Completely trivial to decide!

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

- Value iteration repeats the Bellman updates:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Problem 1: It's slow $-O\left(S^{2} A\right)$ per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

$\mathrm{k}=12$

Gridworld Display

0.64,	0.74,	0.85	1.00
0		4	$\boxed{ }$
0.57		0.57	-1.00
4			
0.49	0.42	0.47	40.28

VALUES AFTER 12 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

$\mathrm{k}=100$

$0.64>$	$0.74>$	0.85	1.00
4			
0.57		0.57	-1.00
0.49	0.43	0.48	40.28
0			

VALUES AFTER 100 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

Policy Methods

Policy Iteration

- Alternative approach for optimal values:
- Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy Improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges
- This is Policy Iteration
- It's still optimal!
- Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler - only one action per state
- ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $\mathrm{V}^{\pi}(\mathrm{s})=$ expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$
\begin{aligned}
& V_{0}^{\pi}(s)=0 \\
& V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Efficiency: $O\left(S^{2}\right)$ per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
- Solve with Matlab (or your favorite linear system solver)

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Iteration

Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Example: Policy Iteration

Policy Evaluation:

$$
\begin{aligned}
& V^{\pi_{0}}(B)=1+0.9 \cdot V^{\pi_{0}}(B) \quad \rightarrow V^{\pi_{0}}(B)=10 \\
& V^{\pi_{0}}(W)=-10+0.9 \cdot V^{\pi_{0}}(O) \quad \rightarrow V^{\pi_{0}}(W)=-10 \\
& V^{\pi_{0}}(O)=0
\end{aligned}
$$

Assume discount $=0.9$

$$
\begin{aligned}
& V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& \pi_{i+1}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Example: Policy Iteration

Policy Evaluation:

$$
\begin{aligned}
& V^{\pi_{0}}(B)=1+0.9 \cdot V^{\pi_{0}}(B) \quad \rightarrow V^{\pi_{0}}(B)=10 \\
& V^{\pi_{0}}(W)=-10+0.9 \cdot V^{\pi_{0}}(O) \quad \rightarrow V^{\pi_{0}}(W)=-10 \\
& V^{\pi_{0}}(O)=0
\end{aligned}
$$

Overheated

Policy Improvement:

Example: Policy Iteration

Policy Evaluation:
$V^{\pi_{0}}(B)=1+0.9 \cdot V^{\pi_{0}}(B) \quad \rightarrow V^{\pi_{0}}(B)=10$
$V^{\pi_{0}}(W)=0.5\left(1+0.9 \cdot V^{\pi_{0}}(B)\right)+0.5\left(1+0.9 \cdot V^{\pi_{0}}(W)\right) \rightarrow V^{\pi_{0}}(W)=10$
$V^{\pi_{0}}(O)=0$
Assume discount $=0.9$

Policy Improvement:

$$
\begin{aligned}
& V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& \pi_{i+1}(s)=\underset{a}{\arg \max _{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]}
\end{aligned}
$$

$$
\left.\pi_{2} \begin{array}{l}
S: 1+0.9 \cdot 10=10 \\
F: 0.5(2+0.9 \cdot 10)+0.5(2+0.9 \cdot\}
\end{array}\right)=11
$$

Example: Policy Iteration

Policy Evaluation:
$V^{\pi_{0}}(B)=1+0.9 \cdot V^{\pi_{0}}(B) \quad \rightarrow V^{\pi_{0}}(B)=10$
$V^{\pi_{0}}(W)=0.5\left(1+0.9 \cdot V^{\pi_{0}}(B)\right)+0.5\left(1+0.9 \cdot V^{\pi_{0}}(W)\right) \rightarrow V^{\pi_{0}}(W)=10$
Assume discount $=0.9$

Policy Improvement:

Example: Policy Iteration

Policy Evaluation:

$$
\rightarrow V^{\pi_{0}}(B)=15.5
$$

$$
V^{\pi_{0}}(B)=0.5\left(2+0.9 \cdot V^{\pi_{0}}(B)\right)+0.5\left(2+0.9 \cdot V^{\pi_{0}}\left(W^{*} \cdot\right)\right)
$$

$$
V^{\pi_{0}}(W)=0.5\left(1+0.9 \cdot V^{\pi_{0}}(B)\right)+0.5\left(1+0.9 \cdot V^{\pi_{0}}(W)\right) \rightarrow V^{\pi_{0}}(W)=14.5
$$

$$
V^{\pi_{0}}(O)=0
$$

$$
\text { Assume discount }=0.9
$$

Policy Improvement:

$$
\begin{aligned}
& V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& \pi_{i+1}(s)=\underset{a}{\arg \max _{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]}
\end{aligned}
$$

$$
\left.\pi_{3} \begin{array}{l}
S: 1+0.9 \cdot 15.5=14.95 \\
F: 0.5(2+0.9 \cdot 15.5)+0.5(2+0.9
\end{array} 14.5\right)=15.5
$$

Example: Policy Iteration

Policy Evaluation:

$$
\rightarrow V^{\pi_{0}}(B)=15.5
$$

$$
V^{\pi_{0}}(B)=0.5\left(2+0.9 \cdot V^{\pi_{0}}(B)\right)+0.5\left(2+0.9 \cdot V^{\pi_{0}}\left(W^{*} \cdot\right)\right)
$$

$$
V^{\pi_{0}}(W)=0.5\left(1+0.9 \cdot V^{\pi_{0}}(B)\right)+0.5\left(1+0.9 \cdot V^{\pi_{0}}(W)\right) \rightarrow V^{\pi_{0}}(W)=14.5
$$

$$
V^{\pi_{0}}(O)=0
$$

$$
\text { Assume discount }=0.9
$$

Policy Improvement:

$$
\begin{aligned}
& V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& \pi_{i+1}(s)=\underset{s^{\prime}}{\arg \max } \sum_{a} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Example: Value Iteration

Convergence*

- Proof Sketch

$$
\begin{aligned}
V^{\pi}(s) & =\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
\pi_{i+1}(s) & =\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Monotonic improvement: $\forall s V^{\pi_{i+1}}(s) \geq V^{\pi_{i}}(s)$
- Termination: π_{i} is optimal if $\forall s \pi_{i}(s)=\pi_{i+1}(s)$
- $\pi_{i+1}(s)$ chooses the best action to take under $V^{\pi_{i}}(s)$
- If $\forall s \pi_{i}(s)=\pi_{i+1}(s)$, then $\pi_{i}(s)$ was already the best action for all states
- Guaranteed termination: only finite number of policies

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it
- Runtime per iteration: $O\left(|S|^{2}|A|\right)$
- In policy iteration:
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- Runtime per value iteration update: $O\left(|S|^{2}\right) \rightarrow$ total runtime to get fixed policy values: $O\left(|S|^{3}\right)$
- After policy is evaluated, a new policy is chosen (slow like a value iteration pass $\left.\rightarrow O\left(|S|^{2}|A|\right)\right)$
- The new policy will be better (or we're done)
- Runtime per iteration: $O\left(|S|^{3}\right)+O\left(|S|^{2}|A|\right) \rightarrow$ slower but can take much fewer iterations
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
- They basically are - they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

