CS 188: Artificial Intelligence

Search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russel, Dawn Song]

Today

- Finish discussion of agents and environments
- Search Problems
- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search

Environment types

	Pacman	Backgammon	Diagnosis	Taxi
Fully or partially observable				
Single-agent or multiagent				
Deterministic or stochastic				
Static or dynamic				
Discrete or continuous				
Known physics?				
Known perf. measure?				

Agent design

The environment type largely determines the agent design **Partially observable** => agent requires **memory** (internal state) **Stochastic** => agent may have to prepare for **contingencies** *Multi-agent* => agent may need to behave *randomly* **Static** => agent has time to compute a rational decision **Continuous time** => continuously operating **controller Unknown physics** => need for **exploration Unknown perf. measure** => observe/interact with **human principal**

Simple reflex agents

Pacman *agent program* in Python

class GoWestAgent(Agent):

def getAction(self, percept):

if Directions.WEST in percept.getLegalPacmanActions():
 return Directions.WEST

else:

return Directions.STOP

Eat adjacent dot, if any

Eat adjacent dot, if any

10 \$+0+4- 6+ 3+5+++++	E Pyder E
76 CS188 Pacman	
SCORE: 0	
	FA12 cs188 lecture 2 uninformed search (6PP).pdf added 4 × 'FA12 cs188 lecture 2 uninformed search (6PP).pdf was added to your Dropbox

Pacman agent contd.

Can we (in principle) extend this reflex agent to behave well in all standard Pacman environments?

No – Pacman is not quite fully observable (power pellet duration) Otherwise, yes – we can (*in principle*) make a lookup table..... *How large would it be?*

Model-based agents

Goal-based agents

Spectrum of representations

Outline of the course

CS 188: Artificial Intelligence

Search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russel, Dawn Song]

Planning Agents

- Planning agents decide based on evaluating future action sequences
- Search algorithms typically assume
 - Known, deterministic transition model
 - Discrete states and actions
 - Fully observable
 - Atomic representation
- Usually have a definite goal
- Optimal: Achieve goal at least cost

Move to nearest dot and eat it

Pydev - Eclipse Ie. Edit. Navigate Search Project Rum Window Help	- 0 x
日・回告 ゆ・0・4・ 6 - 1 白・白・白・白・	El Pydev 🔮 Team »
	84 1
72 CS188 Pacman	
SCORE: 0	
12	
I	-
	11:24 AM 8/28/2012

Precompute optimal plan, execute it

Cansole 3	A Search 📕 第 🖗 🖧	
1	76 CS188 Pacman	
	•••••	
	SCORE: 0	

Search Problems

Search Problems

A search problem consists of:

- A state space *S*
- An initial state *s*₀
- Actions $\mathcal{A}(s)$ in each state
- Transition model Result(s,a)
- A goal test G(s)
 - s has no dots left
- Action cost c(s,a,s')
 - +1 per step; -10 food; -500 win; +500 die; -200 eat ghost
- A solution is an action sequence that reaches a goal state
- An optimal solution has least cost among all solutions

Search Problems Are Models

Example: Traveling in Romania

- State space:
 - Cities
- Initial state:
 - Arad
- Actions:
 - Go to adjacent city
- Transition model:
 - Reach adjacent city
- Goal test:
 - s = Bucharest?
- Action cost:
 - Road distance from s to s'
- Solution?

State Space Sizes

World state:

- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW
- How many
 - World states?
 120x(2³⁰)x(12²)x4
 - States for pathing?120
 - States for eat-all-dots?
 120x(2³⁰)

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent transitions (labeled with actions)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph.

We construct the tree on demand – and we construct as little as possible.

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Those who don't know history are doomed to repeat it!

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid:

How many states within *d* steps of start?

How many states in search tree of depth *d*?

Tree Search

Search Example: Romania

Creating the search tree

Creating the search tree

Creating the search tree

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

- Main variations:
 - Which leaf node to expand next
 - Whether to check for repeated states
 - Data structures for frontier, expanded nodes

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Frontier is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - **b** is the branching factor
 - m is the maximum depth
 - solutions at various depths
- Number of nodes in entire tree?
 - $1 + b + b^2 + \dots b^m = O(b^m)$

Depth-First Search (DFS) Properties

- What nodes does DFS expand?
 - Some left prefix of the tree down to depth *m*.
 - Could process the whole tree!
 - If m is finite, takes time O(b^m)
- How much space does the frontier take?
 - Only has siblings on path to root, so O(bm)
- Is it complete?
 - m could be infinite
 - preventing cycles may help
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Frontier is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the frontier take?
 - Has roughly the last tier, so O(b^s)
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - If costs are equal (e.g., 1)

Quiz: DFS vs BFS

Quiz: DFS vs BFS

When will BFS outperform DFS?

When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!
 - Extra work is $O(b^{s-1})$

Uniform Cost Search

Uniform Cost Search

g(n) = cost from root to n
Strategy: expand lowest g(n)
Frontier is a priority queue
sorted by g(n)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Expands all nodes with cost less than cheapest solution!
 - If that solution costs C* and arcs cost at least *ε*, then the "effective depth" is roughly C*/*ε*
 - Takes time O(b^{C*/ɛ}) (exponential in effective depth)
- How much space does the frontier take?
 - Has roughly the last tier, so O(b^{C*/ε})
- Is it complete?
 - Assuming C* is finite and E > 0, yes!
- Is it optimal?
 - Yes! (Proof next lecture via A*)

Summary

- Assume known, discrete, observable, deterministic, atomic
- Search problems defined by $S, s_0, \mathcal{A}(s), Result(s,a), G(s), c(s,a,s')$
- Search algorithms find action sequences that reach goal states
 - Optimal => minimum-cost
- Search algorithm properties:
 - Depth-first: incomplete, suboptimal, space-efficient
 - Breadth-first: complete, (sub)optimal, space-prohibitive
 - Iterative deepening: complete, (sub)optimal, space-efficient
 - Uniform-cost: complete, optimal, space-prohibitive

Bonus Search Algo Summary

Search	Frontier	Completeness	Optimality	Time	Space	
DFS (Depth-First)	Stuck	trec search - no (cycle) graph search < yes (finite) no (infinite)	no	0(6~)	0(bm)	b = branching factor (assume finite) M = max depth of search tree
BFS (Breadth - First)	queue	yes	NO (except when all edge costs same)	0(6,)	0(ه٬)	S = smallest depth of solution (assume finite)
Iterative Deepening (BFS result w) modified DFS algo)	Stack (same as DFs)	yes (same as BFS)	NO (same as BFS)	O(b ^s) (same as BFS)	O(bs) (same as DFS but w) shortest solution length)	C* = cost of Optimal solution (assume finite) E = minum cost between 2 nodes
UCS (Uniform Cost)	hCap-based PQ (backward cost)	Yes (assuming positive edge costs and $\epsilon > 0$)	yes (assuming positive edge costs and E>0)	0(b ^{c%})	0(b ^{c*})	