

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL

- Learn the MDP model from experiences, then solve the MDP
- o Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - o Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - o Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)

Active Reinforcement Learning (= agent also needs to decide how to collect experiences)

o Key challenges:

• How to efficiently explore?

How to trade off exploration <> exploitation

• Applies to both model-based and model-free. In CS188 we'll cover only in context of Q-learning

Model-Based Reinforcement Learning

Model-Based Idea:

Learn an approximate model based on experiencesSolve for values as if the learned model were correct

• Step 1: Learn empirical MDP model

- o Count outcomes s' for each s, a
- Normalize to give an estimate $\hat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

• Step 2: Solve the learned MDP

• For example, use value iteration, as before

(and repeat as needed)

Direct Evaluation

 \circ Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - \circ Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - o Average those samples

• This is called direct evaluation

Temporal Difference Value Learning

Model-free (temporal difference) learning
 Experience world through episodes

 $(s, a, r, s', a', r', s'', a'', r'', s''' \dots)$

o Update estimates each transition (s, a, r, s')

 Over time, updates will mimic Bellman updates

Temporal Difference Value Learning

• Policy Evaluation in MDPs:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s, a, s', r)
 Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = $R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

Exponential Moving Average

• Exponential moving average • The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$

o Makes recent samples more important

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Value Learning

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma V^{\pi}(s') \right]$

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg\max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$

Idea: learn Q-values, not values
Makes action selection model-free too!

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL

• Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning

• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect experiences)

• Key challenges:

• How to efficiently explore?

 \circ How to trade off exploration <> exploitation

• Applies to both model-based and model-free. In CS188 we'll cover only in context of Q-learning

Q-Value Iteration

• Value iteration: find successive (depth-limited) values • Start with $V_0(s) = 0$, which we know is right

• Given $V_{k'}$ calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

But Q-values are more useful, so compute them instead Ο • Start with $Q_0(s,a) = 0$, which we know is right

• Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - o Receive a sample (s,a,s',r)
 - \circ Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ no longer policy evaluation!

o Incorporate the new estimate into a running average

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - o You have to explore enough
 - You have to eventually make the learning rate small enough
 - o ... but not decrease it too quickly
 - o Basically, in the limit, it doesn't matter how you select actions (!)

Video of Demo Q-Learning -- Crawler

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL

- Learn the MDP model from experiences, then solve the MDP
- o Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - o Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - o Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect experiences)

• Key challenges:

- How to efficiently explore?
- How to trade off exploration <> exploitation

 Applies to both model-based and model-free. In CS188 we'll cover only in context of Q-learning

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - o You don't know the transitions T(s,a,s')
 - o You don't know the rewards R(s,a,s')
 - You choose the actions now
 - o Goal: learn the optimal policy / values

• In this case:

- o Learner makes choices!
- o Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Exploration vs. Exploitation

Video of Demo Q-learning – Manual Exploration – Bridge Grid

How to Explore?

Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

O Problems with random actions?
O You do eventually explore the space, but keep thrashing around once learning is done
O ne solution: lower ε over time
Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L10D5)] [Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

• When to explore?

- o Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

• Exploration function

• Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$

Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

 Note: this propagates the "bonus" back to states that lead to unknown states as well!
 [Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - o Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - o Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect experiences)

- Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
- o Applies to both model-based and model-free. In CS188 we'll cover only in context of Q-learning

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - o Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - o Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect experiences)

- Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
- o Applies to both model-based and model-free. In CS188 we'll cover only in context of Q-learning

• Approximate Reinforcement Learning (= to handle large state spaces)

- Approximate Q-Learning
- Policy Search

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - o Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D4)] [Demo: Q-learning – pacman – tiny – silent train (L11D6)] [Demo: Q-learning – pacman – tricky – watch all (L11D5)]

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $\,\circ\,$ 1 / (dist to dot)^2
 - \circ Is Pacman in a tunnel? (0/1)
 - o etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

• Intuitive interpretation:

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

[Demo: approximate Qlearning pacman (L11D8)]

Video of Demo Approximate Q-Learning --Pacman

Reinforcement Learning -- Overview

- Passive Reinforcement Learning (= how to learn from experiences)
 - Model-based Passive RL
 - Learn the MDP model from experiences, then solve the MDP
 - o Model-free Passive RL
 - Forego learning the MDP model, directly learn V or Q:
 - o Value learning learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
 - Q learning learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to collect experiences)

- Key challenges:
 - How to efficiently explore?
 - How to trade off exploration <> exploitation
- o Applies to both model-based and model-free. In CS188 we'll cover only in context of Q-learning
- Approximate Reinforcement Learning (= to handle large state spaces)
 - Approximate Q-Learning
 - Policy Search

Policy Search

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

• Simplest policy search:

- o Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before

• Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- o If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure, sample wisely, change multiple parameters...

To Summarize ...

Known	MDP:	Offline	So	lution
-------	------	---------	----	--------

Goal	Technique
Compute V*, Q*, π^*	Value / policy iteration
Evaluate a fixed policy π	Policy evaluation

Unknown MDP: Model-Based

Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Goal	Technique	
Compute V*, Q*, π^*	Q-learning	
Evaluate a fixed policy π	Value Learning	

Next Time

• Machine Learning!

- o Learning CPTs in Bayes Nets from data
- o From Perceptron to Neural Networks
- o Optimization

