
CS 188: Artificial Intelligence
Reinforcement Learning II

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Reinforcement Learning -- Overview
o Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL
o Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL
o Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
o Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

o Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
o Key challenges:

o How to efficiently explore?
o How to trade off exploration <> exploitation

o Applies to both model-based and model-free. In CS188 we’ll cover only in
context of Q-learning

Model-Based Reinforcement Learning

o Model-Based Idea:
o Learn an approximate model based on experiences
o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate of
o Discover each when we experience (s, a, s’)

o Step 2: Solve the learned MDP
o For example, use value iteration, as before

(and repeat as needed)

Direct Evaluation

o Goal: Compute values for each state under p

o Idea: Average together observed sample
values
o Act according to p
o Every time you visit a state, write down what the

sum of discounted rewards turned out to be
o Average those samples

o This is called direct evaluation

o Model-free (temporal difference) learning
o Experience world through episodes

oUpdate estimates each transition

oOver time, updates will mimic Bellman
updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Temporal Difference Value Learning

Temporal Difference Value Learning
o Policy Evaluation in MDPs:

o Big idea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, r)
o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Exponential Moving Average

o Exponential moving average
o The running interpolation update:

o Makes recent samples more important

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Value Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

o Idea: learn Q-values, not values
o Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

Reinforcement Learning -- Overview
o Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL
o Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL
o Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
o Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

o Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
o Key challenges:

o How to efficiently explore?
o How to trade off exploration <> exploitation

o Applies to both model-based and model-free. In CS188 we’ll cover only in
context of Q-learning

Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V0(s) = 0, which we know is right
o Given Vk, calculate the depth k+1 values for all states:

o But Q-values are more useful, so compute them instead
o Start with Q0(s,a) = 0, which we know is right
o Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning
o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimate:
o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy
evaluation!

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:
o You have to explore enough
o You have to eventually make the learning rate

small enough
o … but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select actions (!)

Video of Demo Q-Learning -- Crawler

Reinforcement Learning -- Overview
o Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL
o Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL
o Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
o Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

o Active Reinforcement Learning (= agent also needs to decide how
to collect experiences)
o Key challenges:

o How to efficiently explore?
o How to trade off exploration <> exploitation

o Applies to both model-based and model-free. In CS188 we’ll cover only in
context of Q-learning

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation
o This is NOT offline planning! You actually take actions in the world

and find out what happens…

Exploration vs. Exploitation

Video of Demo Q-learning – Manual Exploration – Bridge
Grid

How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L10D5)]
[Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions
o When to explore?

o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states
as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

Video of Demo Q-learning – Exploration Function –
Crawler

Regret
o Even if you learn the optimal

policy, you still make mistakes
along the way!

o Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards

o Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

o Example: random exploration and
exploration functions both end up
optimal, but random exploration
has higher regret

Reinforcement Learning -- Overview
o Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL
o Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL
o Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
o Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

o Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
o Key challenges:

o How to efficiently explore?
o How to trade off exploration <> exploitation

o Applies to both model-based and model-free. In CS188 we’ll cover only in context of Q-learning

Reinforcement Learning -- Overview
o Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL
o Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL
o Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
o Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

o Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
o Key challenges:

o How to efficiently explore?
o How to trade off exploration <> exploitation

o Applies to both model-based and model-free. In CS188 we’ll cover only in context of Q-learning
o Approximate Reinforcement Learning (= to handle large state spaces)

o Approximate Q-Learning
o Policy Search

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training states

from experience
o Generalize that experience to new, similar situations
o This is a fundamental idea in machine learning, and

we’ll see it over and over again

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D4)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D5)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)
o Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

o Example features:
o Distance to closest ghost
o Distance to closest dot
o Number of ghosts
o 1 / (dist to dot)2
o Is Pacman in a tunnel? (0/1)
o …… etc.
o Is it the exact state on this slide?

o Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features that were

on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D8)]

Video of Demo Approximate Q-Learning --
Pacman

Reinforcement Learning -- Overview
o Passive Reinforcement Learning (= how to learn from experiences)

o Model-based Passive RL
o Learn the MDP model from experiences, then solve the MDP

o Model-free Passive RL
o Forego learning the MDP model, directly learn V or Q:

o Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
o Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

o Active Reinforcement Learning (= agent also needs to decide how to collect experiences)
o Key challenges:

o How to efficiently explore?
o How to trade off exploration <> exploitation

o Applies to both model-based and model-free. In CS188 we’ll cover only in context of Q-learning
o Approximate Reinforcement Learning (= to handle large state spaces)

o Approximate Q-Learning
o Policy Search

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
o E.g. your value functions from project 2 were probably horrible estimates of future rewards,

but they still produced good decisions
o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function
o Nudge each feature weight up and down and see if your policy is better than

before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

To Summarize …

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Next Time

o Machine Learning!
o Learning CPTs in Bayes Nets from data
o From Perceptron to Neural Networks
o Optimization

