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Last Time
§ Classification: given inputs x, 

predict labels (classes) y

§ Naïve Bayes
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Parameter Estimation



Parameter Estimation with Maximum Likelihood

§ Estimating the distribution of a random variable
§ E.g.: for each outcome x, look at the empirical rate of that value:

§ This is the estimate of the parameters that maximizes the likelihood of the 
data
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Parameter Estimation with Maximum Likelihood

§ Data: Observed set D of aH Heads and aT Tails  
§ Hypothesis space: Binomial distributions 
§ Learning: finding q is an optimization problem

§ What’s the objective function?

§ MLE: Choose q to maximize probability of D



Parameter Estimation with Maximum Likelihood

§ Set derivative to zero, and solve!
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Parameter Estimation with Maximum Likelihood

§ How do we estimate the conditional probability 
tables?

§ Maximum Likelihood, which corresponds to counting

§ Need to be careful though … let’s see what can go 
wrong..



Underfitting and Overfitting



Example: Overfitting

2 wins!!
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Training and Testing



Important Concepts

§ Data: labeled instances, e.g. emails marked spam/ham
§ Training set
§ Held out set
§ Test set

§ Features: attribute-value pairs which characterize each x

§ Experimentation cycle
§ Learn parameters (e.g. model probabilities) on training set
§ (Tune hyperparameters on held-out set)
§ Compute accuracy on test set
§ Very important: never “peek” at the test set!

§ Evaluation
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not 

generalizing well
§ Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data



Generalization and Overfitting
§ Relative frequency parameters will overfit the training data!

§ Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test 
time

§ Unlikely that every occurrence of “minute” is 100% spam
§ Unlikely that every occurrence of “seriously” is 100% ham
§ What about all the words that don’t occur in the training set at all?
§ In general, we can’t go around giving unseen events zero probability

§ As an extreme case, imagine using the entire email as the only feature
§ Would get the training data perfect (if deterministic labeling)
§ Wouldn’t generalize at all
§ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

§ To generalize better: we need to smooth or regularize the estimates



Smoothing



Unseen Events



Laplace Smoothing

§ Laplace’s estimate:
§ Pretend you saw every outcome 

once more than you actually did

§ Can derive this estimate with 
Dirichlet priors (see cs281a)
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Laplace Smoothing

§ Laplace’s estimate (extended):
§ Pretend you saw every outcome k extra times

§ What’s Laplace with k = 0?
§ k is the strength of the prior

§ Laplace for conditionals:
§ Smooth each condition independently:

r r b



Formal Derivation

§ Relative frequencies are the maximum likelihood estimates

§ Another option is to consider the most likely parameter value given the data

“right” choice of P(theta) 
-> Laplace estimates



Tuning



Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(X|Y), P(Y)
§ Hyperparameters: e.g. the amount / type of 

smoothing to do, k, a

§ What should we learn where?
§ Learn parameters from training data
§ Tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train 

and test on the held-out data
§ Choose the best value and do a final test on 

the test data



Practical Tip: Baselines
§ First step: get a baseline

§ Baselines are very simple “straw man” procedures
§ Help determine how hard the task is
§ Help know what a “good” accuracy is

§ Weak baseline: most frequent label classifier
§ Gives all test instances whatever label was most common in the training set
§ E.g. for spam filtering, might label everything as ham
§ Accuracy might be very high if the problem is skewed
§ E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

§ For real research, usually use previous work as a (strong) baseline



Summary
§ Bayes rule lets us do diagnostic queries with causal probabilities

§ The naïve Bayes assumption takes all features to be independent given the label

§ We can build classifiers out of a naïve Bayes model using training data

§ Smoothing estimates is important in real systems



Linear Classifiers



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”



Some (Simplified) Biology

§ Very loose inspiration: human neurons



Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?



Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            positive 
means the positive class



Decision Rules



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron
§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector



Learning: Binary Perceptron
§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector 

by adding or subtracting the 
feature vector. Subtract if y* is -1.

Before: w f
After: wf + y*f f
f f >=0



Examples: Perceptron

§ Separable Case



Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong 

answer, raise score of right answer



Properties of Perceptrons

§ Separability: true if some parameters get the training 
set perfectly correct

§ Convergence: if the training is separable, perceptron 
will eventually converge (binary case)

Separable

Non-Separable



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over 

time can help (averaged 
perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Example: Multiclass Perceptron

BIAS  : 1
win   : 0
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0  
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0 
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1
1
0
1
1

0
-1
0
-1
-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3
1
0
1
-1
0

0
0
-1
1
0


