
CS 188: Artificial Intelligence
Naïve Bayes, Perceptrons

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Last Time
§ Classification: given inputs x,

predict labels (classes) y

§ Naïve Bayes

Y

F1 FnF2

Parameter Estimation

Parameter Estimation with Maximum Likelihood

§ Estimating the distribution of a random variable
§ E.g.: for each outcome x, look at the empirical rate of that value:

§ This is the estimate of the parameters that maximizes the likelihood of the
data

r r b

r b b

r bb
rb b

r bb

r

b

b

Parameter Estimation with Maximum Likelihood

§ Data: Observed set D of aH Heads and aT Tails
§ Hypothesis space: Binomial distributions
§ Learning: finding q is an optimization problem

§ What’s the objective function?

§ MLE: Choose q to maximize probability of D

Parameter Estimation with Maximum Likelihood

§ Set derivative to zero, and solve!

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

�̂ = argmax
✓

lnP (D | �)

ln �↵H

d

d�
lnP (D | �) =

d

d�
ln �↵H (1� �)↵T

1

Brief Article

The Author

January 11, 2012

⇥̂ = argmax
⇥

lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[ln ⇥�H (1� ⇥)�T] =

d

d⇥
[�H ln ⇥ + �T ln(1� ⇥)]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Parameter Estimation with Maximum Likelihood

§ How do we estimate the conditional probability
tables?

§ Maximum Likelihood, which corresponds to counting

§ Need to be careful though … let’s see what can go
wrong..

Underfitting and Overfitting

Example: Overfitting

2 wins!!

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Training and Testing

Important Concepts

§ Data: labeled instances, e.g. emails marked spam/ham
§ Training set
§ Held out set
§ Test set

§ Features: attribute-value pairs which characterize each x

§ Experimentation cycle
§ Learn parameters (e.g. model probabilities) on training set
§ (Tune hyperparameters on held-out set)
§ Compute accuracy on test set
§ Very important: never “peek” at the test set!

§ Evaluation
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not

generalizing well
§ Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data

Generalization and Overfitting
§ Relative frequency parameters will overfit the training data!

§ Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test
time

§ Unlikely that every occurrence of “minute” is 100% spam
§ Unlikely that every occurrence of “seriously” is 100% ham
§ What about all the words that don’t occur in the training set at all?
§ In general, we can’t go around giving unseen events zero probability

§ As an extreme case, imagine using the entire email as the only feature
§ Would get the training data perfect (if deterministic labeling)
§ Wouldn’t generalize at all
§ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

§ To generalize better: we need to smooth or regularize the estimates

Smoothing

Unseen Events

Laplace Smoothing

§ Laplace’s estimate:
§ Pretend you saw every outcome

once more than you actually did

§ Can derive this estimate with
Dirichlet priors (see cs281a)

r r b

Laplace Smoothing

§ Laplace’s estimate (extended):
§ Pretend you saw every outcome k extra times

§ What’s Laplace with k = 0?
§ k is the strength of the prior

§ Laplace for conditionals:
§ Smooth each condition independently:

r r b

Formal Derivation

§ Relative frequencies are the maximum likelihood estimates

§ Another option is to consider the most likely parameter value given the data

“right” choice of P(theta)
-> Laplace estimates

Tuning

Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(X|Y), P(Y)
§ Hyperparameters: e.g. the amount / type of

smoothing to do, k, a

§ What should we learn where?
§ Learn parameters from training data
§ Tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train

and test on the held-out data
§ Choose the best value and do a final test on

the test data

Practical Tip: Baselines
§ First step: get a baseline

§ Baselines are very simple “straw man” procedures
§ Help determine how hard the task is
§ Help know what a “good” accuracy is

§ Weak baseline: most frequent label classifier
§ Gives all test instances whatever label was most common in the training set
§ E.g. for spam filtering, might label everything as ham
§ Accuracy might be very high if the problem is skewed
§ E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

§ For real research, usually use previous work as a (strong) baseline

Summary
§ Bayes rule lets us do diagnostic queries with causal probabilities

§ The naïve Bayes assumption takes all features to be independent given the label

§ We can build classifiers out of a naïve Bayes model using training data

§ Smoothing estimates is important in real systems

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Some (Simplified) Biology

§ Very loose inspiration: human neurons

Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron
§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector

Learning: Binary Perceptron
§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector

by adding or subtracting the
feature vector. Subtract if y* is -1.

Before: w f
After: wf + y*f f
f f >=0

Examples: Perceptron

§ Separable Case

Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong

answer, raise score of right answer

Properties of Perceptrons

§ Separability: true if some parameters get the training
set perfectly correct

§ Convergence: if the training is separable, perceptron
will eventually converge (binary case)

Separable

Non-Separable

Problems with the Perceptron

§ Noise: if the data isn’t separable,
weights might thrash
§ Averaging weight vectors over

time can help (averaged
perceptron)

§ Mediocre generalization: finds a
“barely” separating solution

§ Overtraining: test / held-out
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1
1
0
1
1

0
-1
0
-1
-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3
1
0
1
-1
0

0
0
-1
1
0

