
CS 188: Artificial Intelligence
Perceptrons, Linear/Logistic Regression

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Supervised Learning

Classification
learning a function with

discrete output value

Regression
learning a function with
real-valued output value

Linear Regression

Model: Linear functions

Linear Regression

Berkeley house prices, 2009

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500 3000 3500

H
ou

se
 p

ric
e

in
 $

10
00

House size in square feet

(x, y), x: house size, y: house price

0 20
0

20

40

Linear regression = fitting a straight line/hyperplane

Prediction: hw(x) = w0 + w1x

Berkeley house prices, 2009

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500 3000 3500

H
ou

se
 p

ric
e

in
 $

10
00

House size in square feet

x

hw(x)

Prediction error

0 20
0

Error or “residual”

Prediction hw(x)
Observation y

Error on one instance: y – hw(x)

x

Find w

§ Define loss function

§ Find w* to minimize loss function

Least squares: Minimizing squared error

§ L2 loss function: sum of squared errors over all examples

§ Loss = ____________________________
§ We want the weights w* that minimize loss
§ At w* the derivatives of loss w.r.t. each weight are zero:

§ ¶Loss/¶w0 = __________________________

§ ¶Loss/¶w1 = __________________________
§ Exact solutions for N examples:

§ !" = $∑& '&(& − ∑& '& ∑& (& / $∑& '&+ − ∑& '&
+

and !, = "
- ∑& (& − !" ∑& '&

§ For the general case where x is an n-dimensional vector
§ X is the data matrix (all the data, one example per row); y is the column of labels
§ w* = (XTX)-1XTy

Least squares: Minimizing squared error

§ L2 loss function: sum of squared errors over all examples
§ Loss = Sj (yj – hw(xj))2 = Sj (yj – (w0 + w1xj))2

§ We want the weights w* that minimize loss
§ At w* the derivatives of loss w.r.t. each weight are zero:

§ ¶Loss/¶w0 = – 2 Sj (yj – (w0 + w1xj)) = 0
§ ¶Loss/¶w1 = – 2 Sj (yj – (w0 + w1xj)) xj = 0

§ Exact solutions for N examples:
§ !" = $∑& '&(& − ∑& '& ∑& (& / $∑& '&+ − ∑& '&

+
and !, = "

- ∑& (& − !" ∑& '&
§ For the general case where x is an n-dimensional vector

§ X is the data matrix (all the data, one example per row); y is the column of labels
§ w* = (XTX)-1XTy

Regression vs Classification

§ Linear regression when output is binary, ! ∈ −1, 1
§ ℎ& " = $' +$("

§ Linear classification
§ Used with discrete output values
§ Threshold a linear function
§ ℎ& " = 1, if $' +$(" ≥ 0
§ ℎ) " = −1, if $' +$(" < 0

1

x

y *+ + *,,

1

x

y

*+ + *,,- *+ + *,,

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1
w2
w3

>0?

Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m
on
ey

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector

Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector

by adding or subtracting the
feature vector. Subtract if y* is -1.

Before: w f
After: wf + y*f f
f f >=0

Examples: Perceptron

§ Separable Case

Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong

answer, raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1
1
0
1
1

0
-1
0
-1
-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3
1
0
1
-1
0

0
0
-1
1
0

Properties of Perceptrons

§ Separability: true if some parameters get the training
set perfectly correct

§ Convergence: if the training is separable, perceptron
will eventually converge (binary case)

Separable

Non-Separable

Problems with the Perceptron

§ Noise: if the data isn’t separable,
weights might thrash
§ Averaging weight vectors over

time can help (averaged
perceptron)

§ Mediocre generalization: finds a
“barely” separating solution

§ Overtraining: test / held-out
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1

How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability going to 1
§ If very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

A 1D Example

definitely blue definitely rednot sure

probability increases exponentially
as we move away from boundary

normalizer

The SoftMax

Best w?

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

§ How to make the scores into probabilities?

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

Best w?

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression

Optimization

Optimization

i.e., how do we solve:

Hill Climbing

Recall from CSPs lecture: simple, general idea
Start wherever
Repeat: move to the best neighboring state
If no neighbors better than current, quit

What’s particularly tricky when hill-climbing for
multiclass logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?

1-D Optimization

Could evaluate and
Then step in best direction

Or, evaluate derivative:
Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

Perform update in uphill direction for each coordinate
The steeper the slope (i.e. the higher the derivative) the bigger the
step for that coordinate

E.g., consider:

Updates: ▪ Updates in vector notation:

with: = gradient

Idea:
Start somewhere
Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

init
for iter = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be
chosen carefully

Batch Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …

pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

init
for iter = 1, 2, …

pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

What will gradient ascent do in multi-class logistic regression?

adds f to the correct
class weights

for y’ weights:

subtracts f from y’ weights in proportion to
the probability current weights give to y’

