CS 188: Artificial Intelligence Perceptrons, Linear/Logistic Regression

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Supervised Learning

Regression

learning a function with real-valued output value

Classification

learning a function with discrete output value

Linear Regression

Model: Linear functions

Linear Regression

Berkeley house prices, 2009

Linear regression = fitting a straight line/hyperplane

Berkeley house prices, 2009

Prediction error

Error on one instance: $y - h_w(x)$

Find w

- Define loss function
- Find w* to minimize loss function

Least squares: Minimizing squared error

- L2 loss function: sum of squared errors over all examples
 - Loss = _____
- We want the weights **w**^{*} that minimize loss
- At **w**^{*} the derivatives of loss w.r.t. each weight are zero:
 - $\partial \text{Loss} / \partial w_0 =$
 - $\partial \text{Loss} / \partial w_1 =$
- Exact solutions for N examples:
 - $w_1 = [N \sum_j x_j y_j (\sum_j x_j)(\sum_j y_j)] / [N \sum_j x_j^2 (\sum_j x_j)^2] \text{ and } w_0 = \frac{1}{N} [\sum_j y_j w_1 \sum_j x_j]$
- For the general case where **x** is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Least squares: Minimizing squared error

- L2 loss function: sum of squared errors over all examples
 - Loss = $\Sigma_j (y_j h_w(x_j))^2 = \Sigma_j (y_j (w_0 + w_1 x_j))^2$
- We want the weights **w**^{*} that minimize loss
- At **w**^{*} the derivatives of loss w.r.t. each weight are zero:
 - $\partial \operatorname{Loss} / \partial w_0 = -2 \Sigma_j (y_j (w_0 + w_1 x_j)) = 0$
 - $\partial \text{Loss} / \partial w_1 = -2 \Sigma_j (y_j (w_0 + w_1 x_j)) x_j = 0$
- Exact solutions for N examples:
 - $w_1 = [N \sum_j x_j y_j (\sum_j x_j)(\sum_j y_j)] / [N \sum_j x_j^2 (\sum_j x_j)^2] \text{ and } w_0 = \frac{1}{N} [\sum_j y_j w_1 \sum_j x_j]$
- For the general case where **x** is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Regression vs Classification

- Linear regression when output is binary, $y \in \{-1, 1\}$
 - $h_{\boldsymbol{w}}(x) = w_0 + w_1 x$

- Linear classification
 - Used with discrete output values
 - Threshold a linear function
 - $h_w(x) = 1$, if $w_0 + w_1 x \ge 0$
 - $h_w(x) = -1$, if $w_0 + w_1 x < 0$

Linear Classifiers

Feature Vectors

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

W BIAS : -3 free : 4 money : 2

Binary Decision Rule

- In the space of feature vectors
 - Examples are points

w

BIAS

free

money :

- Any weight vector is a hyperplane
- One side corresponds to Y=+1
- Other corresponds to Y=-1

-3

4

2

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Examples: Perceptron

Separable Case

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

 w_y

• Score (activation) of a class y:

 $w_y \cdot f(x)$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} w_y \cdot f(x)$$

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

 $y = \arg \max_y w_y \cdot f(x)$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$

Example: Multiclass Perceptron

```
"win the vote" [1 1 0 1 1]
"win the election" [1 1 0 0 1]
"win the game" [1 1 1 0 1]
```


Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

training

test

held-out

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

A 1D Example

The Soft Max

$$P(\operatorname{red}|x) = \frac{e^{w_{\operatorname{red}} \cdot x}}{e^{w_{\operatorname{red}} \cdot x} + e^{w_{\operatorname{blue}} \cdot x}}$$

Best w?

Maximum likelihood estimation:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} = +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$
$$P(y^{(i)} = -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

Multiclass Logistic Regression

- Recall Perceptron:
 - A weight vector for each class: w_y
 - Score (activation) of a class y: $w_y \cdot f(x)$
 - Prediction highest score wins $y = \arg \max_{y} w_y \cdot f(x)$

• How to make the scores into probabilities?

$$z_{1}, z_{2}, z_{3} \rightarrow \underbrace{\frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}}$$
original activations
softmax activations

Best w?

Maximum likelihood estimation:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Optimization

Optimization

i.e., how do we solve:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Hill Climbing

Recall from CSPs lecture: simple, general idea Start wherever Repeat: move to the best neighboring state If no neighbors better than current, quit

What's particularly tricky when hill-climbing for multiclass logistic regression?

- Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

1-D Optimization

2-D Optimization

Source: offconvex.org

Gradient Ascent

Perform update in uphill direction for each coordinate The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate

E.g., consider: $g(w_1, w_2)$

Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$
$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with: $\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$

= gradient

Gradient Ascent

Idea:

Start somewhere

Repeat: Take a step in the gradient direction

Figure source: Mathworks

Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

init
$$\mathcal{W}$$

for iter = 1, 2, ...
 $w \leftarrow w + \alpha * \nabla g(w)$

α: learning rate --- tweaking parameter that needs to be chosen carefully

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

$$g(w)$$

$$\begin{array}{l} \text{init } \mathcal{U} \\ \text{for iter = 1, 2, ...} \\ w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)} | x^{(i)}; w) \end{array}$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

```
init w
for iter = 1, 2, ...
pick random j
w \leftarrow w + \alpha * \nabla \log P(y^{(j)} | x^{(j)}; w)
```

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

$$\begin{array}{l} \mbox{init } w \\ \mbox{for iter = 1, 2, ...} \\ \mbox{pick random subset of training examples J} \\ w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w) \end{array}$$

What will gradient ascent do in multi-class logistic regression?

$$\begin{split} w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)} | x^{(i)}; w) \\ P(y^{(i)} | x^{(i)}; w) &= \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}} \\ \nabla w_{y^{(i)}} f(x^{(i)}) - \nabla \log \sum_{y} e^{w_{y} f(x^{(i)})} \\ \text{adds f to the correct} \\ \text{class weights} &= \frac{1}{\sum_{y} e^{w_{y} f(x^{(i)})} \sum_{y} \left(e^{w_{y} f(x^{(i)})} [0^{T} f(x^{(i)})^{T} 0^{T}]^{T} \right)} \\ \text{for y' weights:} &= \frac{1}{\sum_{y} e^{w_{y} f(x^{(i)})}} e^{w_{y'} f(x^{(i)})} f(x^{(i)})} \\ P(y' | x^{(i)}; w) f(x^{(i)}) &= \text{subtracts} \end{split}$$

 $f(y'|x^{(i)};w)f(x^{(i)})$ subtracts f from y' weights in proportion to the probability current weights give to y'