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Why Games?

" Clear objectives
" Can run very fast by parallelizing
= No safety or ethical concerns



Precursors in Al for Games

1959: Arthur Samuel published checkers program that learned to play
better checkers than himself!

= Disproved the belief that the capability of a computer program cannot exceed that
of the programmer

= Defeated US #4 player in 1961; one draw with world champion

1992: Gerald Tesauro developed TD-Gammon, which uses a neural
network to represent the value function
= Relied on very few handcrafted expert features

1997: IBM’s Deep Blue beat Garry Kasparov in chess
2014: Deepmind started their project on Go



"It may be a hundred years before a computer beats humans at Go
-- maybe even longer;" said Dr. Piet Hut, an astrophysicist at the ) ro b I em
Institute for Advanced Study in Princeton, N.J., and a fan of the
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Go as a Target Problem

= Not much progress was made in
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Exhaustive Search is Hopeless
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" Number of board configurations is greater than the number of
atoms in the universe!

= What did we learn to deal with this?
= Evaluation functions and depth-limited search
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Reducing depth with value network
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The Value Network
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Reducing breadth with policy network

&3
% e
\

/
~



The Policy Network

Move probabilities

p (als)

Position

15



Neural Network Training Pipeline

Human expert Supervised Learning Reinforcement Learning Self-play data Value network

positions policy network policy network
‘Self Play\ ‘Self Play‘ @
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Supervised Learning Phase

Human expert Supervised Learning
positions policy network

= Supervised learning from expert databases to initialize the policy
* 30 million boards from human experts
»" Take only one move from each board to build the dataset
= 13-layer convolutional neural network
" Some Go-specific human-designed input features
" test-set accuracy 57% (non-NN method 44%) 17



Reinforcement Learning Phase

Supervised Learning Reinforcement Learning
policy network policy network

Self Play

= Repeat 1.28 million times
" Play current policy with a random previous version of itself

» Use the policy gradient method to improve the policy

18



Training the Value Function

Reinforcement Learning Self-play data Value network
policy network

Self Play

= Use self-play to generate a dataset of (s, z) pairs

" s represent current board state, z is the results (how many wins and how
many loses) starting from this board state

= Use supervised learning to train value function

" And use as the evaluation function in search!



AlphaGo Results
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= Expert-Level performance with only
pattern matching (no rollouts)
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AlphaGo Weakness

= Can train adversarial agents to
specifically find and attack AlphaGo’s
weaknesses

.

= With an adversarial opponent,
AlphaZero can completely mis-
estimates the value of the positions
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* And keeps filling in its own territory
with pieces!
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" No human expert player will make this
kind of mistake. 21
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AlphaZero

= Learn from first principles
= gets rid of all Go-specific knowledge
" uses neither expert databases nor any Go-specific features
= uses only the board positions as the input

= Can generalize to other board games

» Evaluated on Chess and Shogi in the paper

= Many other improvements in the implementation

= combines the policy and value networks into a single network with a shared
backbone and with two separate heads

= purely uses the trained value function to evaluate positions in the tree, instead of

using rollouts
23
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Next level games?

= Dota2 — OpenAl Five = Starcraft — Deepmind’s AlphaStar

https://openai.com/five/ https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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Why is Starcraft Hard?

= The game of Starcraft is:
= Adversarial
= Long Horizon
= Partially Observable
= Realtime
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AlphaStar

= Large NN trained:
* Phase 1: supervised learning to imitate (strong) human players (why?)

" Phase 2: reinforcement learning

" How strong is AlphaStar?

= Won 5-0 over the world’s strongest StarCraft Il players
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RL agent defeats in-house OpenAl team at fairly
restricted 5v5.

Mirror match of 5 fixed heroes utilizing 5 invulnerable couriers. No neutrals, runes, shrines, wards,
invisibility, summons, illusions, or Scan. No Divine Rapier, Bottle, Quelling Blade, Boots of Travel, Tome of
Knowledge, or Infused Raindrop.

0 READ “OPENAI FIVE”

» WATCH VIDEO

Bill Gates
@BillGates

#AI bots just beat humans at the video game Dota 2. That's a big deal, because
their victory required teamwork and collaboration — a huge milestone in
advancing artificial intelligence.

via Twitter






Summary

" The AlphaGo series demonstrate the benefits of
" Large-scale pattern recognition
= MCTS guided by an accurate policy
" Lots of computation!

" More generally, recent success in Al for games show that:

= Scaling up existing Deep RL algorithms + getting the details right got the
job done!

= This is also demonstrated in other fields, such as GPT-3 for NLP

30



Games that are still Unsolved

= Contract Bridge

= Requires explainable policies (in the bidding phase)

" Hanabi
" Purely cooperative gameplay
= Need to reason about the beliefs and intentions of other agents
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