
Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Expands all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the frontier take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming C* is finite and e > 0, yes!

§ Is it optimal?
§ Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

Summary

§ Assume known, discrete, observable, deterministic, atomic
§ Search problems defined by S, s0, A(s), Result(s,a), G(s), c(s,a,s’)
§ Search algorithms find action sequences that reach goal states

§ Optimal => minimum-cost
§ Search algorithm properties:

§ Depth-first: incomplete, suboptimal, space-efficient
§ Breadth-first: complete, (sub)optimal, space-prohibitive
§ Iterative deepening: complete, (sub)optimal, space-efficient
§ Uniform-cost: complete, optimal, space-prohibitive

Bonus Search Algo Summary

CS 188: Artificial Intelligence
Informed Search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley
[slides adapted from Stuart Russel, Dawn Song]

Example: route-finding in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

What we would like to have happen

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed

Search Heuristics
▪ A heuristic is:

▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing?
▪ Examples: Manhattan distance, Euclidean distance for

pathing

10

5
11.2

Greedy Search

Greedy Search

• Expand the node that seems closest…

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!

Greedy Search

• Strategy: expand a node that you think is
closest to a goal state
• Heuristic: estimate of distance to nearest goal

for each state

• A common case:
• Best-first takes you straight to the (wrong) goal

• Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

A*: the core idea

§ Expand a node n most likely to be on an optimal path
§ Expand a node n s.t. the cost of the best solution through n is optimal
§ Expand a node n with lowest value of g(n) + h*(n)

§ g(n) is the cost from root to n
§ h*(n) is the optimal cost from n to the closest goal

§ We seldom know h*(n) but might have a heuristic approximation h(n)
§ A* = tree search with priority queue ordered by f(n) = g(n) + h(n)

Example: route-finding in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

h(n) = straight-line distance to Bucharest

Example: pathing in Pacman
§ h(n) = Manhattan distance = |Dx| + |Dy|
§ Is Manhattan better than straight-line distance?

10

5
11.2

Is A* Optimal?

What went wrong?
§ Actual bad solution cost < estimated good solution cost
§ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

Admissible Heuristics

Admissible Heuristics
§ A heuristic h is admissible (optimistic) if:

0 £ h(n) £ h*(n)
where h*(n) is the true cost to a nearest goal

§ Example:

§ Finding good, cheap admissible heuristics is the key to success

15

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
§ A is an optimal goal node
§ B is a suboptimal goal node
§ h is admissible

Claim:
§ A will be chosen for expansion before B

…

A
B

Optimality of A* Tree Search: Blocking

Proof:

§ Imagine B is on the frontier

§ Some ancestor n of A is on the frontier,

too (maybe A itself!)

§ Claim: n will be expanded before B
1. f(n) £ f(A)

f(n) = g(n) + h(n) Definition of f-cost

f(n) £ g(A) Admissibility of h

…

g(A) = f(A) h = 0 at a goal

A
B

n

Optimality of A* Tree Search: Blocking

Proof:

§ Imagine B is on the frontier

§ Some ancestor n of A is on the frontier,
too (maybe A itself!)

§ Claim: n will be expanded before B
1. f(n) £ f(A)

2. f(A) < f(B)

…

A
B

n

g(A) < g(B) Suboptimality of B
f(A) < f(B) h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier,

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) £ f(A)
2. f(A) < f(B)
3. n is expanded before B

§ All ancestors of A are expanded before B
§ A is expanded before B
§ A* tree search is optimal

…

A
B

n

f(n) £ f(A) < f(B)

UCS vs A* Contours

§ Uniform-cost expands equally in all
“directions”

§ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

Comparison

Greedy (h) Uniform Cost (g) A* (g+h)

A* Applications

§ Video games
§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ Machine translation
§ Speech recognition
§ Protein design
§ Chemical synthesis
§ …

Creating Heuristics

Creating Admissible Heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

§ Problem P2 is a relaxed version of P1 if A2(s) ÊA1(s) for every s

§ Theorem: h2
*(s) £ h1

*(s) for every s, so h2
*(s) is admissible for P1

15
366

Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ What are the step costs?

Start State Goal StateActions

8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Why is it admissible?
§ h(start) = 8

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

§ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

§ Total Manhattan distance

§ Why is it admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when
the optimal path has…

…4 steps …8 steps …12 steps

A*TILES 13 39 227

A*MANHATTAN 12 25 73

Start State Goal State

Combining heuristics

§ Dominance: h1 ≥ h2 if

"n h1(n) ³ h2(n)
§ Roughly speaking, larger is better as long as both are admissible

§ The zero heuristic is pretty bad (what does A* do with h=0?)

§ The exact heuristic is pretty good, but usually too expensive!

§ What if we have two heuristics, neither dominates the other?
§ Form a new heuristic by taking the max of both:

h(n) = max(h1(n), h2(n))
§ Max of admissible heuristics is admissible and dominates both!

Example: Knight’s moves

§ Minimum number of knight’s moves to get from A to B?
§ h1 = (Manhattan distance)/3

§ h1
’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

§ h2 = (Euclidean distance)/√5 (rounded up to correct parity)
§ h3 = (max x or y shift)/2 (rounded up to correct parity)

§ h(n) = max(h1
’(n), h2(n), h3(n)) is admissible!

Optimality of A* Graph Search

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Simple check against expanded set blocks C
Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs
§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ h*(A)

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)

§ Note: h* necessarily satisfies triangle inequality

§ Consequences of consistency:
§ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C) => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

§ A* graph search is optimal

h=1

A

G

h=4 C

1

h=3

Optimality of A* Graph Search

§ Sketch: consider what A* does with a

consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in

increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach

s optimally are expanded before nodes

that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1

Optimality
§ Tree search:

§ A* is optimal if heuristic is admissible

§ Graph search:
§ A* optimal if heuristic is consistent

§ Consistency implies admissibility

§ Most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

But…

§ A* keeps the entire explored region in memory
§ => will run out of space before you get bored waiting for the answer
§ There are variants that use less memory (Section 3.5.5):

§ IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
§ On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
§ Very inefficient when f is real-valued and each node has a unique value

§ RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best
alternative path available from any ancestor of the current node
§ When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on

that branch

§ SMA* uses all available memory for the queue, minimizing thrashing
§ When full, drop worst node on the queue but remember its value in the parent

A*: Summary

§ A* orders nodes in the queue by f(n) = g(n) + h(n)
§ A* is optimal for trees/graphs with admissible/consistent heuristics

§ Heuristic design is key: often use relaxed problems

g

g

h h

