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Uniform Cost Search
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g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue 
sorted by g(n)
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…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Expands all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the 

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the frontier take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming C* is finite and e > 0, yes!

§ Is it optimal?
§ Yes!  (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1



Summary

§ Assume known, discrete, observable, deterministic, atomic
§ Search problems defined by S, s0, A(s), Result(s,a), G(s), c(s,a,s’)
§ Search algorithms find action sequences that reach goal states

§ Optimal => minimum-cost
§ Search algorithm properties:

§ Depth-first: incomplete, suboptimal, space-efficient
§ Breadth-first: complete, (sub)optimal, space-prohibitive
§ Iterative deepening: complete, (sub)optimal, space-efficient
§ Uniform-cost: complete, optimal, space-prohibitive



Bonus Search Algo Summary



CS 188: Artificial Intelligence
Informed Search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley
[slides adapted from Stuart Russel, Dawn Song]



Example: route-finding in Romania
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What we would like to have happen

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed



Search Heuristics
▪ A heuristic is:

▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing? 
▪ Examples: Manhattan distance, Euclidean distance for 

pathing

10

5
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Greedy Search



Greedy Search

• Expand the node that seems closest…

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!



Greedy Search

• Strategy: expand a node that you think is 
closest to a goal state
• Heuristic: estimate of distance to nearest goal 

for each state

• A common case:
• Best-first takes you straight to the (wrong) goal

• Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)] 
[Demo: contours greedy pacman small maze (L3D4)]



A* Search



A*: the core idea

§ Expand a node n most likely to be on an optimal path
§ Expand a node n s.t. the cost of the best solution through n is optimal
§ Expand a node n with lowest value of g(n) + h*(n)

§ g(n) is the cost from root to n
§ h*(n) is the optimal cost from n to the closest goal 

§ We seldom know h*(n) but might have a heuristic approximation h(n)
§ A* = tree search with priority queue ordered by f(n) = g(n) + h(n) 



Example: route-finding in Romania
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h(n) = straight-line distance to Bucharest



Example: pathing in Pacman
§ h(n) = Manhattan distance = |Dx| + |Dy|
§ Is Manhattan better than straight-line distance?
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Is A* Optimal?

What went wrong?
§ Actual bad solution cost < estimated good solution cost
§ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7



Admissible Heuristics



Admissible Heuristics
§ A heuristic h is admissible (optimistic) if:

0 £ h(n) £ h*(n) 
where h*(n) is the true cost to a nearest goal

§ Example:

§ Finding good, cheap admissible heuristics is the key to success

15



Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:
§ A is an optimal goal node
§ B is a suboptimal goal node
§ h is admissible

Claim:
§ A will be chosen for expansion before B

…

A
B



Optimality of A* Tree Search: Blocking

Proof:

§ Imagine B is on the frontier

§ Some ancestor n of A is on the frontier, 

too (maybe A itself!)

§ Claim: n will be expanded before B
1. f(n) £ f(A)

f(n) = g(n) + h(n) Definition of f-cost

f(n) £ g(A)                         Admissibility of h

…

g(A) = f(A)                         h = 0 at a goal

A
B

n



Optimality of A* Tree Search: Blocking

Proof:

§ Imagine B is on the frontier

§ Some ancestor n of A is on the frontier, 
too (maybe A itself!)

§ Claim: n will be expanded before B
1. f(n) £ f(A)

2. f(A) < f(B)

…

A
B

n

g(A) < g(B)                       Suboptimality of B
f(A) <  f(B)                         h = 0 at a goal



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier, 

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) £ f(A)
2. f(A) < f(B)
3. n is expanded before B

§ All ancestors of A are expanded before B
§ A is expanded before B
§ A* tree search is optimal

…

A
B

n

f(n)  £ f(A)  <  f(B)  



UCS vs A* Contours

§ Uniform-cost expands equally in all 
“directions”

§ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal



Comparison

Greedy (h) Uniform Cost (g) A* (g+h)



A* Applications

§ Video games
§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ Machine translation
§ Speech recognition
§ Protein design
§ Chemical synthesis
§ …



Creating Heuristics



Creating Admissible Heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new 
actions are available

§ Problem P2 is a relaxed version of P1 if A2(s) ÊA1(s) for every s

§ Theorem: h2
*(s) £ h1

*(s) for every s, so h2
*(s) is admissible for P1

15
366



Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ What are the step costs?

Start State Goal StateActions



8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Why is it admissible?
§ h(start) = 8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

§ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

§ Total Manhattan distance

§ Why is it admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when 
the optimal path has…

…4 steps …8 steps …12 steps

A*TILES 13 39 227

A*MANHATTAN 12 25 73

Start State Goal State



Combining heuristics

§ Dominance: h1 ≥ h2 if    

"n h1(n) ³ h2(n)
§ Roughly speaking, larger is better as long as both are admissible

§ The zero heuristic is pretty bad (what does A* do with h=0?)

§ The exact heuristic is pretty good, but usually too expensive!

§ What if we have two heuristics, neither dominates the other?
§ Form a new heuristic by taking the max of both:

h(n) = max( h1(n), h2(n))
§ Max of admissible heuristics is admissible and dominates both!



Example: Knight’s moves

§ Minimum number of knight’s moves to get from A to B?
§ h1 = (Manhattan distance)/3 

§ h1
’ = h1 rounded up to correct parity (even if A, B same color, odd otherwise)

§ h2 = (Euclidean distance)/√5 (rounded up to correct parity)
§ h3 = (max x or y shift)/2 (rounded up to correct parity)

§ h(n) = max( h1
’(n), h2(n), h3(n)) is admissible!



Optimality of A* Graph Search



A* Graph Search Gone Wrong?
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Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs
§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ h*(A)

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)

§ Note: h* necessarily satisfies triangle inequality

§ Consequences of consistency:
§ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C)   => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

§ A* graph search is optimal

h=1

A

G

h=4 C

1

h=3



Optimality of A* Graph Search

§ Sketch: consider what A* does with a 

consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in 

increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach 

s optimally are expanded before nodes 

that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1



Optimality
§ Tree search:

§ A* is optimal if heuristic is admissible

§ Graph search:
§ A* optimal if heuristic is consistent

§ Consistency implies admissibility

§ Most natural admissible heuristics tend to be 
consistent, especially if from relaxed problems



But…

§ A* keeps the entire explored region in memory
§ => will run out of space before you get bored waiting for the answer
§ There are variants that use less memory (Section 3.5.5):

§ IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
§ On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
§ Very inefficient when f is real-valued and each node has a unique value

§ RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best 
alternative path available from any ancestor of the current node 
§ When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on 

that branch

§ SMA* uses all available memory for the queue, minimizing thrashing
§ When full, drop worst node on the queue but remember its value in the parent



A*: Summary

§ A* orders nodes in the queue by f(n) = g(n) + h(n) 
§ A* is optimal for trees/graphs with admissible/consistent heuristics

§ Heuristic design is key: often use relaxed problems

g

g

h h


