Uniform Cost Search

Uniform Cost Search

g(n) = cost from root to n
Strategy: expand lowest g(n)
Frontier is a priority queue
sorted by g(n)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Expands all nodes with cost less than cheapest solution!
 - If that solution costs C* and arcs cost at least *ε*, then the "effective depth" is roughly C*/*ε*
 - Takes time O(b^{C*/ɛ}) (exponential in effective depth)
- How much space does the frontier take?
 - Has roughly the last tier, so O(b^{C*/ε})
- Is it complete?
 - Assuming C* is finite and E > 0, yes!
- Is it optimal?
 - Yes! (Proof next lecture via A*)

Summary

- Assume known, discrete, observable, deterministic, atomic
- Search problems defined by $S, s_0, \mathcal{A}(s), Result(s,a), G(s), c(s,a,s')$
- Search algorithms find action sequences that reach goal states
 - Optimal => minimum-cost
- Search algorithm properties:
 - Depth-first: incomplete, suboptimal, space-efficient
 - Breadth-first: complete, (sub)optimal, space-prohibitive
 - Iterative deepening: complete, (sub)optimal, space-efficient
 - Uniform-cost: complete, optimal, space-prohibitive

Bonus Search Algo Summary

Search	Frontier	Completeness	Optimality	Time	Space	
DFS (Depth-First)	Stuck	trec search - no (cycle) graph search < yes (finite) no (infinite)	no	0(6~)	0(bm)	b = branching factor (assume finite) M = max depth of search tree
BFS (Breadth - First)	queue	yes	NO (except when all edge costs same)	0(6,)	0(ه٬)	S = smallest depth of solution (assume finite)
Iterative Deepening (BFS result w) modified DFS algo)	Stack (same as DFs)	yes (same as BFS)	NO (same as BFS)	O(b ^s) (same as BFS)	O(bs) (same as DFS but w) shortest solution length)	C* = cost of Optimal solution (assume finite) E = minum cost between 2 nodes
UCS (Uniform Cost)	hCap-based PQ (backward cost)	Yes (assuming positive edge costs and $\epsilon > 0$)	yes (assuming positive edge costs and E>0)	0(b ^{c%})	0(b ^{c*})	

CS 188: Artificial Intelligence

Informed Search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

[slides adapted from Stuart Russel, Dawn Song]

Example: route-finding in Romania

What we would like to have happen

Guide search towards the goal instead of all over the place

Informed

Uninformed

Search Heuristics

- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Pathing?
 - Examples: Manhattan distance, Euclidean distance for pathing

Greedy Search

- Is it optimal?
 - No. Resulting path to Bucharest is not the shortest!

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal

• Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)] [Demo: contours greedy pacman small maze (L3D4)]

A* Search

A^{*}: the core idea

- Expand a node n most likely to be on an optimal path
- Expand a node n s.t. the cost of the best solution through n is optimal
- Expand a node *n* with lowest value of $g(n) + h^*(n)$
 - g(n) is the cost from root to n
 - h^{*}(n) is the optimal cost from n to the closest goal
- We seldom know h^{*}(n) but might have a heuristic approximation h(n)
- A^* = tree search with priority queue ordered by f(n) = g(n) + h(n)

Example: route-finding in Romania

Example: pathing in Pacman

- h(n) = Manhattan distance = $|\Delta x| + |\Delta y|$
- Is Manhattan better than straight-line distance?

Is A* Optimal?

What went wrong?

- Actual bad solution cost < estimated good solution cost</p>
- We need estimates to be less than actual costs!

Admissible Heuristics

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:
 - $0 \leq h(n) \leq h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

Example:

Finding good, cheap admissible heuristics is the key to success

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- *h* is admissible

Claim:

• A will be chosen for expansion before **B**

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor *n* of *A* is on the frontier, too (maybe *A* itself!)
- Claim: *n* will be expanded before *B*
 - 1. $f(n) \leq f(A)$

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor *n* of *A* is on the frontier, too (maybe *A* itself!)
- Claim: *n* will be expanded before *B*
 - 1. $f(n) \leq f(A)$
 - 2. f(A) < f(B)

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor *n* of *A* is on the frontier, too (maybe *A* itself!)
- Claim: *n* will be expanded before *B*
 - 1. $f(n) \leq f(A)$
 - 2. f(A) < f(B)
 - 3. *n* is expanded before *B* —
- All ancestors of A are expanded before B
- A is expanded before B
- A* tree search is optimal

 $f(n) \leq f(A) < f(B)$

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Comparison

Greedy (h)

Uniform Cost (g)

A* (g+h)

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- Protein design
- Chemical synthesis

Creating Heuristics

Creating Admissible Heuristics

Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

- Problem P_2 is a relaxed version of P_1 if $\mathcal{A}_2(s) \supseteq \mathcal{A}_1(s)$ for every s
- Theorem: $h_2^*(s) \le h_1^*(s)$ for every *s*, so $h_2^*(s)$ is admissible for P_1

Example: 8 Puzzle

Start State

Actions

Goal State

- What are the states?
- How many states?
- What are the actions?
- What are the step costs?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8

Start State

Goal State

	Average nodes expanded when the optimal path has					
	4 steps	8 steps	12 steps			
UCS	112	6,300	3.6 x 10 ⁶			
A*TILES	13	39	227			

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
A*TILES	13	39	227		
A*MANHATTAN	12	25	73		

Combining heuristics

• Dominance: $h_1 \ge h_2$ if

$\forall n \ h_1(n) \geq h_2(n)$

- Roughly speaking, larger is better as long as both are admissible
- The zero heuristic is pretty bad (what does A* do with h=0?)
- The exact heuristic is pretty good, but usually too expensive!
- What if we have two heuristics, neither dominates the other?
 - Form a new heuristic by taking the max of both:

 $h(n) = \max(h_1(n), h_2(n))$

Max of admissible heuristics is admissible and dominates both!

Example: Knight's moves

- Minimum number of knight's moves to get from A to B?
 - h₁ = (Manhattan distance)/3
 - $h_1' = h_1$ rounded up to correct parity (even if A, B same color, odd otherwise)
 - h₂ = (Euclidean distance)/V5 (rounded up to correct parity)
 - h₃ = (max x or y shift)/2 (rounded up to correct parity)
- $h(n) = \max(h_1'(n), h_2(n), h_3(n))$ is admissible!

Optimality of A* Graph Search

A* Graph Search Gone Wrong?

Simple check against expanded set blocks C Fancy check allows new C if cheaper than old but requires recalculating C's descendants

G (6+<mark>0</mark>)

G (5+<mark>0</mark>)

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal h(A) ≤ h^{*}(A)
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc h(A) - h(C) ≤ c(A,C)

or $h(A) \le c(A,C) + h(C)$ (triangle inequality)

- Note: h* <u>necessarily</u> satisfies triangle inequality
- Consequences of consistency:
 - The *f* value along a path never decreases:

 $h(A) \le c(A,C) + h(C) \implies g(A) + h(A) \le g(A) + c(A,C) + h(C)$

A* graph search is optimal

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
- Graph search:
 - A* optimal if heuristic is consistent
- Consistency implies admissibility
- Most natural admissible heuristics tend to be consistent, especially if from relaxed problems

But...

- A* keeps the entire explored region in memory
- => will run out of space before you get bored waiting for the answer
- There are variants that use less memory (Section 3.5.5):
 - IDA* works like iterative deepening, except it uses an *f*-limit instead of a depth limit
 - On each iteration, remember the smallest *f*-value that exceeds the current limit, use as new limit
 - Very inefficient when f is real-valued and each node has a unique value
 - RBFS is a recursive depth-first search that uses an *f*-limit = the *f*-value of the best alternative path available from any ancestor of the current node
 - When the limit is exceeded, the recursion unwinds but remembers the best reachable *f*-value on that branch
 - SMA* uses all available memory for the queue, minimizing thrashing
 - When full, drop worst node on the queue but remember its value in the parent

A*: Summary

- A* orders nodes in the queue by f(n) = g(n) + h(n)
- A* is optimal for trees/graphs with admissible/consistent heuristics
- Heuristic design is key: often use relaxed problems

