Uniform Cost Search
Uniform Cost Search

\[g(n) = \text{cost from root to } n \]

Strategy: expand lowest \(g(n) \)

Frontier is a priority queue sorted by \(g(n) \)
Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Expands all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- How much space does the frontier take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- Is it complete?
 - Assuming C^* is finite and $\varepsilon > 0$, yes!

- Is it optimal?
 - Yes! (Proof next lecture via A*)
Assume known, discrete, observable, deterministic, atomic

Search problems defined by $S, s_0, A(s), Result(s,a), G(s), c(s,a,s')$

Search algorithms find action sequences that reach goal states
- Optimal => minimum-cost

Search algorithm properties:
- Depth-first: incomplete, suboptimal, space-efficient
- Breadth-first: complete, (sub)optimal, space-prohibitive
- Iterative deepening: complete, (sub)optimal, space-efficient
- Uniform-cost: complete, optimal, space-prohibitive
Bonus Search Algo Summary

<table>
<thead>
<tr>
<th>Search</th>
<th>Frontier</th>
<th>Completeness</th>
<th>Optimality</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS (Depth-First)</td>
<td>Stack</td>
<td>tree search - no (cycle) graph search < yes (finite) no (infinite)</td>
<td>no</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>BFS (Breadth-First)</td>
<td>queue</td>
<td>yes (except when all edge costs same)</td>
<td>no</td>
<td>$O(b^s)$</td>
<td>$O(b^s)$</td>
</tr>
<tr>
<td>Iterative Deepening (BFS result w/ modified DFS algo)</td>
<td>Stack</td>
<td>yes (same as DFS)</td>
<td>no</td>
<td>$O(b^s)$</td>
<td>$O(bs)$</td>
</tr>
<tr>
<td>UCS (Uniform Cost)</td>
<td>heap-based PQ (backward cost)</td>
<td>yes (assuming positive edge costs and $e > 0$)</td>
<td>yes (assuming positive edge costs and $e > 0$)</td>
<td>$O(b^{c/e})$</td>
<td>$O(b^{c/e})$</td>
</tr>
</tbody>
</table>

- **b** = branching factor (assume finite)
- **m** = max depth of search tree
- **s** = smallest depth of solution (assume finite)
- **c** = cost of optimal solution (assume finite)
- **E** = minimum cost between 2 nodes
CS 188: Artificial Intelligence

Informed Search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley

[slides adapted from Stuart Russel, Dawn Song]
Example: route-finding in Romania
What we would like to have happen

Guide search *towards the goal* instead of *all over the place*

Informed: Start -> Goal

Uninformed: Start -> Goal
A heuristic is:
- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance for pathing
Greedy Search
Greedy Search

• Expand the node that seems closest...

• Is it optimal?
 • No. Resulting path to Bucharest is not the shortest!
Greedy Search

• **Strategy:** expand a node that you think is closest to a goal state
 • Heuristic: estimate of distance to nearest goal for each state

• **A common case:**
 • Best-first takes you straight to the (wrong) goal

• **Worst-case:** like a badly-guided DFS
A* Search
A*: the core idea

- Expand a node \(n \) most likely to be on an optimal path
- Expand a node \(n \) s.t. the cost of the best solution through \(n \) is optimal
- Expand a node \(n \) with lowest value of \(g(n) + h^*(n) \)
 - \(g(n) \) is the cost from root to \(n \)
 - \(h^*(n) \) is the optimal cost from \(n \) to the closest goal
- We seldom know \(h^*(n) \) but might have a heuristic approximation \(h(n) \)
- \(A^* \) = tree search with priority queue ordered by \(f(n) = g(n) + h(n) \)
Example: route-finding in Romania

\[h(n) = \text{straight-line distance to Bucharest} \]
Example: pathing in Pacman

- $h(n) = \text{Manhattan distance} = |\Delta x| + |\Delta y|$
- Is Manhattan better than straight-line distance?
Is A* Optimal?

What went wrong?

- **Actual** bad solution cost < **estimated** good solution cost
- We need estimates to be less than actual costs!
Admissible Heuristics
A heuristic h is admissible (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

Example:

Finding good, cheap admissible heuristics is the key to success.
Optimality of A* Tree Search
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will be chosen for expansion before B
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
 1. $f(n) \leq f(A)$

- $f(n) = g(n) + h(n)$
- $f(n) \leq g(A)$
- $g(A) = f(A)$
- Definition of f-cost
- Admissibility of h
- $h = 0$ at a goal
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
 1. $f(n) \leq f(A)$
 2. $f(A) < f(B)$

\[g(A) < g(B) \]
\[f(A) < f(B) \]
Suboptimality of B
\[h = 0 \text{ at a goal} \]
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
 1. $f(n) \leq f(A)$
 2. $f(A) < f(B)$
 3. n is expanded before B
- All ancestors of A are expanded before B
- A is expanded before B
- A* tree search is optimal

$f(n) \leq f(A) < f(B)$
UCS vs A* Contours

- Uniform-cost expands equally in all "directions"

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
Comparison

Greedy (h) Uniform Cost (g) A* (g+h)
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- Protein design
- Chemical synthesis
- ...

[Image of a game map with pathfinding highlighted]
Creating Heuristics

YOU GOT HEURISTIC UPGRADE!
Creating Admissible Heuristics

- Often, admissible heuristics are solutions to \textit{relaxed problems}, where new actions are available.

Problem P_2 is a relaxed version of P_1 if $\mathcal{A}_2(s) \supseteq \mathcal{A}_1(s)$ for every s.

Theorem: $h_2^*(s) \leq h_1^*(s)$ for every s, so $h_2^*(s)$ is admissible for P_1.

$h_2^*(s)$ is shown in red, while $h_1^*(s)$ is in green.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What are the step costs?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$

Start State

Goal State

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>A*TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total *Manhattan* distance
- Why is it admissible?
- \(h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \)

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>A*MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

Start State

Goal State
Combining heuristics

- Dominance: \(h_1 \geq h_2 \) if
 \[\forall n \; h_1(n) \geq h_2(n) \]
 - Roughly speaking, larger is better as long as both are admissible
 - The zero heuristic is pretty bad (what does A* do with h=0?)
 - The exact heuristic is pretty good, but usually too expensive!

- What if we have two heuristics, neither dominates the other?
 - Form a new heuristic by taking the max of both:
 \[h(n) = \max(h_1(n), h_2(n)) \]
 - Max of admissible heuristics is admissible and dominates both!
Example: Knight’s moves

- Minimum number of knight’s moves to get from A to B?
 - $h_1 = (\text{Manhattan distance})/3$
 - $h_1' = h_1$ rounded up to correct parity (even if A, B same color, odd otherwise)
 - $h_2 = (\text{Euclidean distance})/\sqrt{5}$ (rounded up to correct parity)
 - $h_3 = (\text{max x or y shift})/2$ (rounded up to correct parity)
 - $h(n) = \max(h_1'(n), h_2(n), h_3(n))$ is admissible!
Optimality of A* Graph Search
A* Graph Search Gone Wrong?

State space graph

- **S** (h=2)
- **A** (h=4)
- **B** (h=1)
- **C** (h=1)
- **G** (h=0)

Search tree

- **S** (0+2)
 - **A** (1+4)
 - **B** (1+1)
 - **C** (2+1)
 - **C** (3+1)
 - **G** (5+0)
 - **G** (6+0)

Simple check against expanded set blocks C
Fancy check allows new C if cheaper than old but requires recalculating C’s descendants
Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 \[h(A) \leq h^*(A) \]
 - Consistency: heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq c(A,C) \]
 or \[h(A) \leq c(A,C) + h(C) \] (triangle inequality)
 - Note: \(h^* \) necessarily satisfies triangle inequality
- Consequences of consistency:
 - The \(f \) value along a path never decreases:
 \[h(A) \leq c(A,C) + h(C) \Rightarrow g(A) + h(A) \leq g(A) + c(A,C) + h(C) \]
 - \(A^* \) graph search is optimal
Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal
Optimality

- **Tree search:**
 - A^* is optimal if heuristic is admissible

- **Graph search:**
 - A^* optimal if heuristic is consistent

- Consistency implies admissibility

- Most natural admissible heuristics tend to be consistent, especially if from relaxed problems
But...

- A* keeps the entire explored region in memory
- => will run out of space before you get bored waiting for the answer
- There are variants that use less memory (Section 3.5.5):
 - IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
 - On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
 - Very inefficient when f is real-valued and each node has a unique value
 - RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best alternative path available from any ancestor of the current node
 - When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on that branch
 - SMA* uses all available memory for the queue, minimizing thrashing
 - When full, drop worst node on the queue but remember its value in the parent
A*: Summary

- A* orders nodes in the queue by $f(n) = g(n) + h(n)$
- A* is optimal for trees/graphs with admissible/consistent heuristics
- Heuristic design is key: often use relaxed problems