
CS 188: Artificial Intelligence
CSPs Review + Local search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley
[These slides adapted from Stuart Russell and Dawn Song]

Search Methods

§ BFS
§ Tries all possible partial assignments;

like brute force search
§ All solutions are on deepest level

of tree
§ DFS

§ Cannot catch obvious violated constraints
in partial assignments due to atomic
state representation

§ Backtracking Search
§ Fix order of variables
§ Check constraints as you go with “incremental goal test”

Backtracking Search Improvements: Filtering

§ Forward checking: Cross off values that violate a constraint when added to the existing
assignment
§ Checks all arcs into the assigned variable

§ Arc Consistency: constraint propagation to
ensure all arcs are consistent
§ Any time a variable X loses a value, all arcs into X need to be rechecked

§ K-Consistency: any consistent assignment to k-1 variables can extend to kth node
§ Strong K-Consistency: ensuring 1-consistency, 2-consistency, 3-consistency, …, k-consistency

Delete from the tail!

Backtracking Search Improvements: Ordering

§ Variable Ordering: Minimum remaining values (MRV)
§ Choose the variable with the fewest legal values left in its domain

§ Tie-break using the variable involved in most constraints

§ “Fail-fast” to prune search tree

§ Value Ordering: Least Constraining Value (LCV)
§ Choose the value that rules out the fewest values in the

remaining variables

§ May require additional computation (forward-checking/AC3)

§ Leave highest flexibility for later variable assignments

Algorithm Pseudocode

CS 188: Artificial Intelligence
Local search

Instructors: Angela Liu and Yanlai Yang

University of California, Berkeley
[These slides adapted from Stuart Russell and Dawn Song]

Local search algorithms

§ In many optimization problems, path is irrelevant; the goal state is the solution
§ Then state space = set of “complete” configurations;

find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

§ In such cases, can use iterative improvement algorithms: keep a single “current”
state, try to improve it

§ Constant space, suitable for online as well as offline search
§ More or less unavoidable if the “state” is yourself (i.e., learning)

Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

Heuristic for n-queens problem

§ Goal: n queens on board with no conflicts, i.e., no queen attacking another
§ States: n queens on board, one per column
§ Actions: move a queen in its column
§ Heuristic value function: number of conflicts

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current ← make-node(problem.initial-state)
loop do

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then

return current.state
current ← neighbor

“Like climbing Everest in thick fog with amnesia”

Global and local maxima
Random restarts

§ find global optimum
§ duh

Random sideways moves
§ Escape from shoulders
§ Loop forever on flat

local maxima

Hill-climbing on the 8-queens problem

§ No sideways moves:
§ Succeeds w/ prob. 0.14
§ Average number of moves per trial:

§ 4 when succeeding, 3 when getting stuck

§ Expected total number of moves needed:
§ 3(1-p)/p + 4 =~ 22 moves

§ Allowing 100 sideways moves:
§ Succeeds w/ prob. 0.94
§ Average number of moves per trial:

§ 21 when succeeding, 65 when getting stuck

§ Expected total number of moves needed:
§ 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating

Simulated annealing

§ Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state

§ Basic idea:
§ Allow “bad” moves occasionally, depending on “temperature”
§ High temperature => more bad moves allowed, shake the system out of

its local minimum
§ Gradually reduce temperature according to some schedule
§ Sounds pretty flaky, doesn’t it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state

current ← problem.initial-state

for t = 1 to ∞ do
T ←schedule(t)

if T = 0 then return current

next ← a randomly selected successor of current

∆E ← next.value – current.value

if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T

Simulated Annealing

§ Theoretical guarantee:
§ Stationary distribution (Boltzmann): P(x) a eE(x)/T

§ If T decreased slowly enough, will converge to optimal state!
§ Proof sketch

§ Consider two adjacent states x, y with E(y) > E(x) [high is good]
§ Assume x®y and y®x and outdegrees D(x) = D(y) = D
§ Let P(x), P(y) be the equilibrium occupancy probabilities at T
§ Let P(x®y) be the probability that state x transitions to state y

Simulated Annealing

§ Is this convergence an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
§ “Slowly enough” may mean exponentially slowly
§ Random restart hillclimbing also converges to optimal state…

§ Simulated annealing and its relatives are a key
workhorse in VLSI layout and other optimal
configuration problems

Local beam search

§ Basic idea:
§ K copies of a local search algorithm, initialized randomly
§ For each iteration

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evolution!

Or, K chosen randomly with
a bias towards good ones

Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?

Local search in continuous spaces

Example: Siting airports in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients

§ Many configuration and optimization problems can be
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary

