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Search Methods

§ BFS
§ Tries all possible partial assignments;

like brute force search 
§ All solutions are on deepest level 

of tree
§ DFS

§ Cannot catch obvious violated constraints 
in partial assignments due to atomic 
state representation

§ Backtracking Search
§ Fix order of variables
§ Check constraints as you go with “incremental goal test”



Backtracking Search Improvements: Filtering

§ Forward checking: Cross off values that violate a constraint when added to the existing 
assignment
§ Checks all arcs into the assigned variable

§ Arc Consistency: constraint propagation to 
ensure all arcs are consistent
§ Any time a variable X loses a value, all arcs into X need to be rechecked

§ K-Consistency: any consistent assignment to k-1 variables can extend to kth node
§ Strong K-Consistency: ensuring 1-consistency, 2-consistency, 3-consistency, …, k-consistency

Delete from the tail!



Backtracking Search Improvements: Ordering

§ Variable Ordering: Minimum remaining values (MRV)
§ Choose the variable with the fewest legal values left in its domain

§ Tie-break using the variable involved in most constraints

§ “Fail-fast” to prune search tree

§ Value Ordering: Least Constraining Value (LCV)
§ Choose the value that rules out the fewest values in the 

remaining variables

§ May require additional computation (forward-checking/AC3)

§ Leave highest flexibility for later variable assignments



Algorithm Pseudocode
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Local search algorithms

§ In many optimization problems, path is irrelevant; the goal state is the solution 
§ Then state space = set of “complete” configurations;

find configuration satisfying constraints, e.g., n-queens problem; or, find 
optimal configuration, e.g., travelling salesperson problem 

§ In such cases, can use iterative improvement algorithms: keep a single “current” 
state, try to improve it 

§ Constant space, suitable for online as well as offline search
§ More or less unavoidable if the “state” is yourself (i.e., learning) 



Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit



Heuristic for n-queens problem

§ Goal: n queens on board with no conflicts, i.e., no queen attacking another
§ States: n queens on board, one per column
§ Actions: move a queen in its column
§ Heuristic value function: number of conflicts



Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current ← make-node(problem.initial-state) 
loop do 

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then

return current.state
current ← neighbor

“Like climbing Everest in thick fog with amnesia” 



Global and local maxima
Random restarts

§ find global optimum
§ duh

Random sideways moves
§ Escape from shoulders
§ Loop forever on flat 

local maxima



Hill-climbing on the 8-queens problem

§ No sideways moves:
§ Succeeds w/ prob. 0.14
§ Average number of moves per trial:

§ 4 when succeeding, 3 when getting stuck

§ Expected total number of moves needed:
§ 3(1-p)/p + 4 =~ 22 moves

§ Allowing 100 sideways moves:
§ Succeeds w/ prob. 0.94
§ Average number of moves per trial:

§ 21 when succeeding, 65 when getting stuck

§ Expected total number of moves needed:
§ 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating



Simulated annealing

§ Resembles the annealing process used to cool metals slowly to 
reach an ordered (low-energy) state

§ Basic idea: 
§ Allow “bad” moves occasionally, depending on “temperature”
§ High temperature => more bad moves allowed, shake the system out of 

its local minimum
§ Gradually reduce temperature according to some schedule
§ Sounds pretty flaky, doesn’t it?



Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a  state 

current ← problem.initial-state 

for t = 1 to ∞ do
T ←schedule(t)

if T = 0 then return current

next ← a randomly selected successor of current

∆E ← next.value – current.value

if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T



Simulated Annealing

§ Theoretical guarantee:
§ Stationary distribution (Boltzmann): P(x) a eE(x)/T

§ If T decreased slowly enough, will converge to optimal state!
§ Proof sketch 

§ Consider two adjacent states x, y with E(y) > E(x) [high is good]
§ Assume x®y and y®x and outdegrees D(x) = D(y) = D
§ Let P(x), P(y) be the equilibrium occupancy probabilities at T
§ Let P(x®y) be the probability that state x transitions to state y



Simulated Annealing

§ Is this convergence an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape a local optimum, 

the less likely you are to ever make them all in a row
§ “Slowly enough” may mean exponentially slowly
§ Random restart hillclimbing also converges to optimal state…

§ Simulated annealing and its relatives are a key 
workhorse in VLSI layout and other optimal 
configuration problems



Local beam search

§ Basic idea:
§ K copies of a local search algorithm, initialized randomly
§ For each iteration

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evolution!

Or, K chosen randomly with 
a bias towards good ones



Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety



Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?



Local search in continuous spaces



Example: Siting airports in Romania
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Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations 
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2



Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing 

3. Compute gradient of f(x) analytically



Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients



§ Many configuration and optimization problems can be 
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary


