
CS 188: Artificial Intelligence
Local Search + Games

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

[These slides adapted from Stuart Russell and Dawn Song]

Hill Climbing

§ Hill-Climbing:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ Random-Restart
§ Rerun hill-climbing at different starting states

§ Simulated Annealing
§ High temperature => more bad moves allowed, shake the

system out of its local minimum
§ Gradually reduce temperature according to some schedule to

focus later search on (hopefully) the globally optimal region

Local beam search

§ Basic idea:
§ K copies of a local search algorithm, initialized randomly
§ For each iteration

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evolution!

Or, K chosen randomly with
a bias towards good ones

Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?

Local search in continuous spaces

Example: Siting airports in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients

§ Many configuration and optimization problems can be
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary

CS 188: Artificial Intelligence

Games: Minimax and Alpha-Beta

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

[These slides adapted from Stuart Russell and Dawn Song]

Outline

§ History / Overview

§ Minimax for Zero-Sum Games

§ α-β Pruning

§ Finite lookahead and evaluation

A brief history
§ Checkers:

§ 1950: First computer player.
§ 1959: Samuel’s self-taught program.
§ 1994: First computer world champion: Chinook defeats Tinsley
§ 2007: Checkers solved! Endgame database of 39 trillion states

§ Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.
§ 1960s onward: gradual improvement under “standard model”
§ 1997: Deep Blue defeats human champion Garry Kasparov
§ 2022: Stockfish rating 3541 (vs 2882 for Magnus Carlsen 2015).

§ Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 1968-2005: various ad hoc approaches tried, novice level
§ 2005-2014: Monte Carlo tree search -> strong amateur
§ 2016-2017: AlphaGo defeats human world champions

§ Pacman

§ Game = task environment with > 1 agent
§ Axes:

§ Deterministic or stochastic?
§ Perfect information (fully observable)?
§ Two, three, or more players?
§ Teams or individuals?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games

“Standard” Games

§ Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

§ Game formulation:
§ Initial state: s0

§ Players: Player(s) indicates whose move it is
§ Actions: Actions(s) for player on move
§ Transition model: Result(s,a)
§ Terminal test: Terminal-Test(s)
§ Terminal values: Utility(s,p) for player p

§ Or just Utility(s) for player making the decision at root

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities
§ Pure competition:

§ One maximizes, the other minimizes

§ General-Sum Games
§ Agents have independent utilities
§ Cooperation, indifference, competition,

shifting alliances, and more are all possible

§ Team Games
§ Common payoff for all team members

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

8

2 0 2 6 4 6… …

Value of a state:
The best achievable

outcome (utility)
from that state

Terminal States:
V(s) = known

Non-Terminal States:
V(s) = max V(s’)

s’ Î successors(s)

Tic-Tac-Toe Game Tree

Minimax Values

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
V(s) = max V(s’)

s’ Î successors(s)

Terminal States:
V(s) = known

MIN nodes: under Opponent’s control
V(s) = min V(s’)

s’ Î successors(s)

Minimax algorithm

§ Choose action leading to state with best minimax value
§ Assumes all future moves will be optimal
§ => rational against a rational player

22

Implementation

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) minimax_value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) minimax_value(Result(s,a))

function minimax-decision(s) returns an action
return the action a in Actions(s) with the highest
minimax_value(Result(s,a))

Generalized minimax
§ What if the game is not zero-sum, or has multiple players?

§ Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1

Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ Humans can’t do this either, so how do

we play chess?

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any
MAX node on this path

• The order of generation matters: more
pruning is possible if good moves come first

3

3

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping

§ Who cares about n’s value? MAX

§ Let α be the best value that MAX can get so far at any
choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α,β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

§ Theorem: This pruning has no effect on minimax value computed for the root!

§ Good child ordering improves effectiveness of pruning
§ Iterative deepening helps with this

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!

§ This is a simple example of metareasoning (reasoning about reasoning)

§ For chess: only 3550 instead of 35100!! Yaaay!!!!!

10 10 0

max

min

Alpha-Beta Best-Case Analysis

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf

Summary

§ Games are decision problems with ³ 2 agents
§ Huge variety of issues and phenomena depending on details of interactions and payoffs

§ For zero-sum games, optimal decisions defined by minimax
§ Simple extension to n-player “rotating” max with vectors of utilities
§ Implementable as a depth-first traversal of the game tree
§ Time complexity O(bm), space complexity O(bm)

§ Alpha-beta pruning
§ Preserves optimal choice at the root
§ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
§ Time complexity drops to O(bm/2) with ideal node ordering

§ Exact solution is impossible even for “small” games like chess

