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Hill Climbing

§ Hill-Climbing:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ Random-Restart
§ Rerun hill-climbing at different starting states

§ Simulated Annealing
§ High temperature => more bad moves allowed, shake the 

system out of its local minimum
§ Gradually reduce temperature according to some schedule to 

focus later search on (hopefully) the globally optimal region



Local beam search

§ Basic idea:
§ K copies of a local search algorithm, initialized randomly
§ For each iteration

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evolution!

Or, K chosen randomly with 
a bias towards good ones



Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety



Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?



Local search in continuous spaces



Example: Siting airports in Romania
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Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations 
x = (x1,y1), (x2,y2), (x3,y3)

City locations (xc,yc)

Ca = cities closest to airport a

Objective: minimize

f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2



Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing 

3. Compute gradient of f(x) analytically



Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|
§ Is this a local or global minimum of f?
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients



§ Many configuration and optimization problems can be 
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary
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Outline

§ History / Overview

§ Minimax for Zero-Sum Games

§ α-β Pruning 

§ Finite lookahead and evaluation



A brief history
§ Checkers:

§ 1950: First computer player.  
§ 1959: Samuel’s self-taught program. 
§ 1994: First computer world champion: Chinook defeats Tinsley 
§ 2007: Checkers solved! Endgame database of 39 trillion states

§ Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, 

McCarthy. 
§ 1960s onward: gradual improvement under “standard model”
§ 1997: Deep Blue defeats human champion Garry Kasparov
§ 2022: Stockfish rating 3541 (vs 2882 for Magnus Carlsen 2015).

§ Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 1968-2005: various ad hoc approaches tried, novice level
§ 2005-2014: Monte Carlo tree search -> strong amateur
§ 2016-2017: AlphaGo defeats human world champions

§ Pacman



§ Game = task environment with > 1 agent
§ Axes:

§ Deterministic or stochastic?
§ Perfect information (fully observable)?
§ Two, three, or more players?
§ Teams or individuals?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games



“Standard” Games

§ Standard games are deterministic, observable, 
two-player, turn-taking, zero-sum

§ Game formulation:
§ Initial state: s0

§ Players: Player(s) indicates whose move it is
§ Actions: Actions(s) for player on move
§ Transition model: Result(s,a)
§ Terminal test: Terminal-Test(s)
§ Terminal values: Utility(s,p) for player p

§ Or just Utility(s) for player making the decision at root



Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities 
§ Pure competition: 

§ One maximizes, the other minimizes

§ General-Sum Games
§ Agents have independent utilities
§ Cooperation, indifference, competition, 

shifting alliances, and more are all possible

§ Team Games
§ Common payoff for all team members



Adversarial Search



Single-Agent Trees
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Value of a State

8

2 0 2 6 4 6… …

Value of a state: 
The best achievable 

outcome (utility) 
from that state

Terminal States:
V(s) = known

Non-Terminal States:
V(s) =      max      V(s’)

s’ Î successors(s)



Tic-Tac-Toe Game Tree



Minimax Values

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
V(s) =      max      V(s’)

s’ Î successors(s)

Terminal States:
V(s) = known

MIN nodes: under Opponent’s control
V(s) =      min      V(s’)

s’ Î successors(s)



Minimax algorithm

§ Choose action leading to state with best minimax value
§ Assumes all future moves will be optimal
§ => rational against a rational player

22



Implementation

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) minimax_value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) minimax_value(Result(s,a))

function minimax-decision(s) returns an action
return the action a in Actions(s) with the highest       
minimax_value(Result(s,a))



Generalized minimax
§ What if the game is not zero-sum, or has multiple players?

§ Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…
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Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ Humans can’t do this either, so how do 

we play chess?



Game Tree Pruning



Minimax Example

12 8 5 23 2 144 6

3 2 2
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Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any 
MAX node on this path

• The order of generation matters: more 
pruning is possible if good moves come first

3

3



Alpha-Beta Quiz



Alpha-Beta Quiz 2



Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping

§ Who cares about n’s value?  MAX

§ Let α be the best value that MAX can get so far at any 
choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can 
prune n’s other children (it’s already bad enough that it 
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any 

choice point along the current path from the root

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α,β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Pruning Properties

§ Theorem: This pruning has no effect on minimax value computed for the root!

§ Good child ordering improves effectiveness of pruning
§ Iterative deepening helps with this

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!

§ This is a simple example of metareasoning (reasoning about reasoning)

§ For chess: only 3550 instead of 35100!! Yaaay!!!!!

10 10 0

max

min



Alpha-Beta Best-Case Analysis

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf


Summary

§ Games are decision problems with ³ 2 agents
§ Huge variety of issues and phenomena depending on details of interactions and payoffs

§ For zero-sum games, optimal decisions defined by minimax
§ Simple extension to n-player “rotating” max with vectors of utilities
§ Implementable as a depth-first traversal of the game tree
§ Time complexity O(bm), space complexity O(bm)

§ Alpha-beta pruning
§ Preserves optimal choice at the root
§ Alpha/beta values keep track of best obtainable values from any max/min nodes on path 

from root to current node
§ Time complexity drops to O(bm/2) with ideal node ordering 

§ Exact solution is impossible even for “small” games like chess


