
CS 188: Artificial Intelligence
Adversarial Search II

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

[These slides adapted from Stuart Russell and Dawn Song]

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α,β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Quiz

Alpha-Beta Pruning Properties

§ Theorem: This pruning has no effect on minimax value computed for the root!

§ Good child ordering improves effectiveness of pruning
§ Iterative deepening helps with this

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!

§ This is a simple example of metareasoning (reasoning about reasoning)

§ For chess: only 3550 instead of 35100!! Yaaay!!!!!

10 10 0

max

min

Alpha-Beta Best-Case Analysis

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf

Summary

§ Games are decision problems with ³ 2 agents
§ Huge variety of issues and phenomena depending on details of interactions and payoffs

§ For zero-sum games, optimal decisions defined by minimax
§ Simple extension to n-player “rotating” max with vectors of utilities
§ Implementable as a depth-first traversal of the game tree
§ Time complexity O(bm), space complexity O(bm)

§ Alpha-beta pruning
§ Preserves optimal choice at the root
§ Alpha/beta values keep track of best obtainable values from any max/min nodes on path

from root to current node
§ Time complexity drops to O(bm/2) with ideal node ordering

§ Exact solution is impossible even for “small” games like chess

Outline

§ Finite lookahead and evaluation

§ Games with chance elements

§ Monte Carlo tree search

The story so far…

§ Focus on two-player, zero-sum, deterministic, observable, turn-taking games

§ Minimax defines rational behavior

§ Recursive DFS implementation: space complexity O(bm), time complexity O(bm)

§ Alpha-beta pruning with good node ordering reduces time complexity to O(bm/2)

§ Still nowhere close to solving chess, let alone Go or StarCraft

Resource Limits

Resource Limits

§ Problem: In realistic games, cannot search to leaves!

§ Solution (Shannon, 1950): Bounded lookahead
§ Search only to a preset depth limit or horizon
§ Use an evaluation function for non-terminal positions

§ Guarantee of optimal play is gone

§ Example:
§ Suppose we can explore 1M nodes per move
§ Chess with alpha-beta, 35(8/2) =~ 1M; depth 8 is quite good

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

§ Evaluation functions are always
imperfect

§ Deeper search => better play
(usually)

§ Or, deeper search gives same
quality of play with a less
accurate evaluation function

§ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Pacman with Depth-2 Lookahead

Pacman with Depth-10 Lookahead

Evaluation Functions

§ Evaluation functions score non-terminals in depth-limited search

§ Typically weighted linear sum of features:
§ EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
§ E.g., w1 = 9, f1(s) = (num white queens – num black queens), etc.

§ Or a more complex nonlinear function (e.g., NN) trained by self-play RL
§ Terminate search only in quiescent positions, i.e., no major

changes expected in feature values

Evaluation for Pacman

Games with uncertain outcomes

Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100
Tictactoe, chess
Minimax

Tetris, roulette
Expectimax

Backgammon, Monopoly
Expectiminimax

Minimax

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) minimax_value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) minimax_value(Result(s,a))

function decision(s) returns an action
return the action a in Actions(s) with the highest
minimax_value(Result(s,a))

Expectiminimax

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) value(Result(s,a))
if Player(s) = CHANCE then return suma in Actions(s) Pr(a) * value(Result(s,a))

function decision(s) returns an action

return the action a in Actions(s) with the highest
value(Result(s,a))

Example: Backgammon

§ Dice rolls increase b: 21 possible rolls with 2 dice

§ Backgammon » 20 legal moves

§ 4 plies = 20 x (21 x 20)3 = 1.2 x 109

§ As depth increases, probability of reaching a given

search node shrinks

§ So usefulness of search is diminished

§ So limiting depth is less damaging

§ But pruning is trickier…

§ Historic AI: TDGammon uses depth-2 search + very

good evaluation function + reinforcement learning:

world-champion level play

Image: Wikipedia

What Values to Use?

§ For worst-case minimax reasoning, evaluation function scale doesn’t matter
§ We just want better states to have higher evaluations (get the ordering right)
§ Minimax decisions are invariant with respect to monotonic transformations on values

§ Expectiminimax decisions are invariant with respect to positive affine transformations
§ Expectiminimax evaluation functions have to be aligned with actual win probabilities!

0 40 20 30 x2 0 1600 400 900

x>y => f(x)>f(y) f(x) = Ax+B where A>0

22

Monte Carlo Tree Search

§ Methods based on alpha-beta search assume a fixed horizon
§ Pretty hopeless for Go, with b > 300

§ MCTS combines two important ideas:
§ Evaluation by rollouts – play multiple games to termination from a

state s (using a simple, fast rollout policy) and count wins and losses
§ Selective search – explore parts of the tree that will help improve the

decision at the root, regardless of depth

Rollouts

§ For each rollout:
§ Repeat until terminal:

§ Play a move according to
a fixed, fast rollout policy

§ Record the result
§ Fraction of wins

correlates with the true
value of the position!

§ Having a “better”
rollout policy helps

“Move 37”

MCTS Version 0

§ Do N rollouts from each child of the root, record fraction of wins
§ Pick the move that gives the best outcome by this metric

57/100 65/10039/100

MCTS Version 0

§ Do N rollouts from each child of the root, record fraction of wins
§ Pick the move that gives the best outcome by this metric

57/100 59/1000/100

MCTS Version 0.9

§ Allocate rollouts to more promising nodes

77/140 90/1500/10

MCTS Version 0.9

§ Allocate rollouts to more promising nodes

61/100 48/1006/10

MCTS Version 1.0

§ Allocate rollouts to more promising nodes
§ Allocate rollouts to more uncertain nodes

61/100 48/1006/10

UCB heuristics

§ UCB1 formula combines “promising” and “uncertain”:

§ N(n) = number of rollouts from node n
§ U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))
§ A provably not terrible heuristic for bandit problems

§ (which are not the same as the problem we face here!)

MCTS Version 2.0: UCT

§ Repeat until out of time:
§ Given the current search tree, recursively apply UCB to choose a path

down to a leaf (not fully expanded) node n
§ Add a new child c to n and run a rollout from c
§ Update the win counts from c back up to the root

§ Choose the action leading to the child with highest N

31

UCT Example

1/3 2/2 1/1

4/7 0/1 0/1

4/9

1/1

1/2

5/10

Why is there no min or max?????

§ “Value” of a node, U(n)/N(n), is a weighted sum of child values!
§ Idea: as N ®¥ , the vast majority of rollouts are concentrated in

the best child(ren), so weighted average ® max/min
§ Theorem: as N ®¥ UCT selects the minimax move

§ (but N never approaches infinity!)

33

Summary

§ Games require decisions when optimality is impossible
§ Bounded-depth search and approximate evaluation functions

§ Games force efficient use of computation
§ Alpha-beta pruning, MCTS

§ Game playing has produced important research ideas
§ Reinforcement learning (checkers)
§ Iterative deepening (chess)
§ Rational metareasoning (Othello)
§ Monte Carlo tree search (chess, Go)
§ Solution methods for partial-information games in economics (poker)

§ Video games present much greater challenges – lots to do!
§ b = 10500, |S| = 104000, m = 10,000, partially observable, often > 2 players

