CS 188: Artificial Intelligence

Probability

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

Uncertainty

- The real world is rife with uncertainty!
- E.g., if I leave for SFO 2 hours before my flight, will I be there in time?
- Sources of Uncertainty:
- partial observability (road state, other drivers' plans, etc.)
- noisy sensors (radio traffic reports, Google maps)
- immense complexity of modelling and predicting traffic, security line, etc.
- lack of knowledge of world dynamics (will tire burst?)
- Probabilistic assertions summarize effects of ignorance and laziness
- Combine probability theory + utility theory -> decision theory
- Maximize expected utility : $a^{*}=\operatorname{argmax}_{a} \sum_{s} P(s \mid a) U(s)$

Basic laws of (discrete) probability

- Begin with a set Ω of possible worlds
- E.g., 6 possible rolls of a die, $\{1,2,3,4,5,6\}$

- A probability model assigns a number $P(\omega)$ to each world ω
- E.g., $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$.
- These numbers must satisfy
- $0 \leq P(\omega) \leq 1$
- $\sum_{\omega \in \Omega} P(\omega)=1$

Basic laws contd.

- An event is any subset of Ω
- E.g., "roll < 4" is the set $\{1,2,3\}$
- E.g., "roll is odd" is the set $\{1,3,5\}$

- The probability of an event is the sum of probabilities over its worlds
- $P(A)=\sum_{\omega \in A} P(\omega)$
- E.g., $P($ roll $<4)=P(1)+P(2)+P(3)=1 / 2$

Random Variables

- A random variable (usually denoted by a capital letter) is some aspect of the world about which we (may) be uncertain
- Formally a deterministic function of ω
- The range of a random variable is the set of possible values
- Odd = Is the dice roll an odd number? \rightarrow \{true, false\}
- e.g. $\operatorname{Odd}(1)=$ true, $\operatorname{Odd}(6)=$ false
- often write the event Odd=true as odd, Odd=false as \neg odd
- $T=$ Is it hot or cold? $\rightarrow\{$ hot, cold $\}$
- $D=$ How long will it take to get to the airport? $\rightarrow[0, \infty)$

- $L_{\text {Ghost }}=$ Where is the ghost? $\rightarrow\{(0,0),(0,1), \ldots\}$
- The probability distribution of a random variable X gives the probability for each value x in its range (probability of the event $X=x$)
- $P(X=x)=\sum_{\{\omega: X(\omega)=x\}} P(\omega)$
- $P(x)$ for short (when unambiguous)
- $P(X)$ refers to the entire distribution (think of it as a vector or table)

Probability Distributions

- Associate a probability with each value; sums to 1
- Temperature:

$P(T)$
T
hot
cold

- Weather:
$P(W)$

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- Joint distribution
$P(T, W)$

Making possible worlds

- In many cases we
- begin with random variables and their domains
- construct possible worlds as assignments of values to all variables
- E.g., two dice rolls Roll_{1} and Roll_{2}
- How many possible worlds?
- What are their probabilities?
- Size of distribution for n variables with range size d ?

- For all but the smallest distributions, cannot write out by hand!

Probabilities of events

- Recall that the probability of an event is the sum of probabilities of its worlds:
- $P(A)=\sum_{\omega \in A} P(\omega)$
- So, given a joint distribution over all variables, can compute any event probability!
- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR not foggy?
- Joint distribution
$P(T, W)$

		Temperature	
		hot	cold
$\begin{aligned} & \bar{\omega} \\ & \frac{1}{\mathbb{N}} \\ & \frac{1}{3} \end{aligned}$	sun	0.45	0.15
	rain	0.02	0.08
	fog	0.03	0.27
	meteor	0.00	0.00

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Collapse a dimension by adding

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$			
		Temperature	
		hot	cold
$\begin{aligned} & \bar{\oplus} \\ & \stackrel{5}{ \pm} \\ & \stackrel{1}{3} \end{aligned}$	sun	0.45	0.15
	rain	0.02	0.08
	fog	0.03	0.27
	meteor	0.00	0.00

$$
\begin{aligned}
& P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=0.15 / 0.50 \\
& \begin{array}{l}
=P(W=s, T=c)+P(W=r, T=c)+P(W=f, T=c)+P(W=m, T=c) \\
=0.15+0.08+0.27+0.00=0.50
\end{array}
\end{aligned}
$$

Conditional Distributions

- Distributions for one set of variables given another set

$P(W \mid T=h)$	$P(W \mid T=c$	$P(W \mid T)$	
hot	cold	hot	cold
0.90	0.30	0.90	0.30
0.04	0.16	0.04	0.16
0.06	0.54	0.06	0.54
0.00	0.00	0.00	0.00

Normalizing a distribution

- (Dictionary) To bring or restore to a normal condition
- Procedure:

All entries sum to ONE

- Multiply each entry by $\alpha=1 /($ sum over all entries)

		Temperature	
		hot	cold
	sun	0.45	0.15
	rain	0.02	0.08
	fog	0.03	0.27
	meteor	0.00	0.00

$$
P(W \mid T=c)=P(W, T=c) / P(T=c)
$$

$$
\begin{aligned}
& P(W, T=c) \\
& \begin{array}{|l|l|}
\hline 0.15 & \\
\hline 0.08 & \\
\hline 0.27 & \\
\hline & \\
\hline 0.00 & \alpha=1 / 0.50=2 \\
& \\
\hline
\end{array} \begin{array}{|l|l|}
\hline 0.30 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(a \mid b) P(b)=P(a, b)
$$

$$
\Longleftrightarrow P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

The Product Rule: Example

$P(W \mid T) P(T)=P(W, T)$
$P(W \mid T)$

hot	cold
0.90	0.30 0.04 0.06 0.16 0.00
	0.54

$P(T)$
T P hot 0.5 cold 0.5

		Temperature	
		hot	cold
	sun	0.45	0.15
	rain	0.02	0.08
	fog	0.03	0.27
	meteor	0.00	0.00

The Chain Rule

- A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:
- $P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{1}, x_{2}\right)=P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)$
- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from a probability model
- Typically for a query variable given evidence
- E.g., P(airport on time | no accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(airport on time \| no accidents, 5 a.m.) = 0.95
- P(airport on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- Probability model $\mathrm{P}\left(X_{1}, \ldots, X_{n}\right)$ is given
- We want:
- Partition the variables X_{1}, \ldots, X_{n} into sets as follows:
- Evidence variables: $E=\boldsymbol{e}$
$P(Q \mid e)$
- Query variables: Q
- Hidden variables: H
- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out \boldsymbol{H} from model to get joint of query and evidence

- Step 3: Normalize
$\mathrm{P}(\boldsymbol{Q} \mid \boldsymbol{e})=\alpha \mathrm{P}(\boldsymbol{Q}, \boldsymbol{e})$

Inference by Enumeration

- P(W)?
- P(W | winter)?

Season	Temp	Weather	P
summer	hot	sun	0.35
summer	hot	rain	0.01
summer	hot	fog	0.01
summer	hot	meteor	0.00
summer	cold	sun	0.10
summer	cold	rain	0.05
summer	cold	fog	0.09
summer	cold	meteor	0.00
winter	hot	sun	0.10
winter	hot	rain	0.01
winter	hot	fog	0.02
winter	hot	meteor	0.00
winter	cold	sun	0.15
winter	cold	rain	0.20
winter	cold	fog	0.18
winter	cold	meteor	0.00

Inference by Enumeration

- Obvious problems:
- Worst-case time complexity $O\left(d^{n}\right)$ (exponential in \#hidden variables)
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution
- $O\left(d^{n}\right)$ data points to estimate the entries in the joint distribution

Bayes' Rule

- Write the product rule both ways:

$$
P(a \mid b) P(b)=P(a, b)=P(b \mid a) P(a)
$$

- Dividing left and right expressions, we get:

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

- Why is this at all helpful?
- Let us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Describes an "update" step from prior $P(a)$ to posterior $P(a \mid b)$

Inference with Bayes' Rule

- Example: We know that meningitis causes stiff neck 80\% of the time. Prior probability of any patient having meningitis is 0.0001 . Prior probability of any patient having stiff neck is 0.01 .
- M: meningitis, S: stiff neck

$$
\left.\left.\begin{array}{r}
P(s \mid m)=0.8 \\
P(m)=0.0001 \\
P(s)=0.01
\end{array}\right\} \begin{array}{l}
\text { Example } \\
\text { givens }
\end{array}\right] \begin{aligned}
& P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.01}
\end{aligned}
$$

- Note: posterior probability of meningitis still very small: 0.008

Independence

- Two variables X and Y are (absolutely) independent if

$$
\forall x, y \quad P(x, y)=P(x) P(y)
$$

- I.e., the joint distribution factors into a product of two simpler distributions
- Equivalently, via the product rule $P(x, y)=P(x \mid y) P(y)$,

$$
P(x \mid y)=P(x) \quad \text { or } \quad P(y \mid x)=P(y)
$$

- Example: two dice rolls Roll_{1} and Roll_{2}
- $P\left(\right.$ Rol $\left.\left\|_{1}=5, R o\right\|_{2}=3\right)=P\left(\right.$ Rol $\left._{1}=5\right) P\left(R o \|_{2}=3\right)=1 / 6 \times 1 / 6=1 / 36$
- $P\left(\right.$ Rol $\|_{2}=3 \mid$ Rol $\left._{1}=5\right)=P\left(\right.$ Rol $\left._{2}=3\right)$

Example: Independence

- n fair, independent coin flips:

		$P\left(X_{2}\right)$		$P\left(X_{n}\right)$	
н	0.5	н	0.5	H	0.5
T	0.5	T	0.5	T	0.5

Conditional Independence

Conditional Independence

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if:

$$
\forall x, y, z \quad P(x \mid y, z)=P(x \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z \quad P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Conditional Independence Examples

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence Examples

- What about this domain:
- Fire
- Smoke
- Alarm

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: usually red
- 1 or 2 away: mostly orange
- 3 or 4 away: typically yellow
- 5+ away: often green
- Click on squares until confident of location, then "bust"

Ghostbusters model

- Variables and ranges:
- G (ghost location) in $\{(1,1), \ldots,(3,3)\}$
- $C_{x, y}$ (color measured at square x, y) in
 \{red,orange,yellow,green\}
- Ghostbuster physics:
- Uniform prior distribution over ghost location: $P(G)$
- Sensor model: $P\left(C_{x, y} \mid G\right)$ (depends only on distance to G)
- E.g. $P\left(C_{1,1}=\right.$ yellow $\left.\mid G=(1,1)\right)=0.1$

Ghostbusters model, contd.

- $\mathrm{P}\left(\mathrm{G}, C_{1,1}, \ldots C_{3,3}\right)$ has $9 \times 4^{9}=2,359,296$ entries!!!
- Ghostbuster independence:
- Are $C_{1,1}$ and $C_{1,2}$ independent?

- E.g., does $\mathrm{P}\left(C_{1,1}=\right.$ yellow $)=\mathrm{P}\left(C_{1,1}=\right.$ yellow $\mid C_{1,2}=$ orange $)$?
- Ghostbuster physics again:
- $P\left(C_{x, y} \mid G\right)$ depends only on distance to G
- So $P\left(C_{1,1}=\right.$ yellow $\left.\mid \underline{G}=(2,3)\right)=P\left(C_{1,1}=\right.$ yellow $\mid \underline{G=(2,3)}, C_{1,2}=$ orange $)$
- I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:
- $P\left(G, C_{1,1}, \ldots C_{3,3}\right)=P(G) P\left(C_{1,1} \mid G\right) P\left(C_{1,2} \mid G, C_{1,1}\right) P\left(C_{1,3} \mid G, C_{1,1}, C_{1,2}\right) \ldots P\left(C_{3,3} \mid G, C_{1,1}, \ldots, C_{3,2}\right)$
- Now simplify using conditional independence:
- $P\left(G, C_{1,1}, \ldots C_{3,3}\right)=P(G) P\left(C_{1,1} \mid G\right) P\left(C_{1,2} \mid G\right) P\left(C_{1,3} \mid G\right) \ldots P\left(C_{3,3} \mid G\right)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from exponential to quadratic in the number of squares
- This is called a Naïve Bayes model:
- One discrete query variable; all other variables are evidence variables
- Evidence variables are conditionally independent given the query variable

To Summarize

- Basic laws: $0 \leq P(\omega) \leq 1, \quad \sum_{\omega \in \Omega} P(\omega)=1, P(A)=\sum_{\omega \in A} P(\omega)$
- Random variable $X(\omega)$ has a value in each ω
- Distribution $P(X)$ gives probability for each possible value x
- Joint distribution $P(X, Y)$ gives total probability for each combination x, y
- Summing out/marginalization: $P(X=x)=\sum_{y} P(X=x, Y=y)$
- Conditional probability: $P(X \mid Y)=P(X, Y) / P(Y)$
- Chain rule: $P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, . ., X_{i-1}\right)$
- Bayes Rule: $P(X \mid Y)=P(Y \mid X) P(X) / P(Y)$
- Independence: $P(X, Y)=P(X) P(Y)$ or $P(X \mid Y)=P(X)$ or $P(Y \mid X)=P(Y)$
- Conditional Independence: $P(X \mid Y, Z)=P(X \mid Z)$ or $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$

Next time

- Bayes nets!

